Form 4 and Supporting Engineering Calculations for Fleming Locomotive Company #18

Document Purpose

This document contains the Federal Railroad Administration (FRA) Form 4 for the Fleming Locomotive Company #18. This is in support of the requirements of the Code of Federal Regulations Title 49, Part 230. The document begins with an easy to read summary of the calculations, then presents the official Form 4, then proceeds with the detailed calculations followed by the survey of thicknesses and other geometry measurements, and a tensile strength discussion. Last, is a tutorial on how to recreate this document from individual spreadsheets and other material.

Table of Contents

Summary of Results	4
FRA Form 4	
Calculations	
Calculation Approach	
Plate Thicknesses of Flat Stayed Surfaces	
Diagonal Braces - Front Flue Sheet	
Dry Pipe	
Tubes	
Circumferential Joints & Seams – Flue Sheet / 1 st Course	20
Longitudinal Joints & Seams – 1 st Course	
Boiler Courses Not at Seams – 1 st Course	23
Circumferential Joints & Seams – 1 st Course / 2 nd Course	24
Longitudinal Joints & Seams – 2 nd Course	25
Boiler Courses Not at Seams – 2 nd Course	
Circumferential Joints & Seams - Dome Top	
Circumferential Joints & Seams - Dome Bottom	29
Longitudinal Joints & Seams – Steam Dome	
Dome Cylinder	31
Dome Manhole Opening	32
Top Dome Flange	34
Dome Cap	35
Throat Sheet Braces	
Wrapper Sheet - Roof	
Thermic Syphon	47
Staybolts	
Diagonal Braces – Back Head	
Heating Surface and Steam Generating Capacity	

Γhickness Measurements	. 54
Front Flue Sheet	. 55
Braces	. 56
Dry Pipe	. 59
Tubes	. 60
1 st Course	. 61
2 nd Course	. 63
Dome Cap	. 65
Dome and Manhole	. 66
Outside Throat Sheet	. 67
Inside Throat Sheet	. 68
Rear Flue Sheet	. 69
Roof Sheet	. 70
Crown Sheet	. 71
Side Wrapper Sheets	. 72
Firebox Side Sheets	. 73
Thermic Syphon	
Door Sheet	. 75
Back Head	. 76
Staybolts	. 77
Tensile Strength of Plate	. 78
How to Recreate This Document	. 79

Summary of Results

The actual calculations are all embodied in an interlocking set of spreadsheets. The "Main" sheet is used to set the desired working pressure and allowed plate tensile strength for all other sheets. This "Main" sheet also pulls all the answers and measurements from the other sheets, and then performs the comparisons. What follows is this summary:

Summary			
WP = working pressure (set here to propagate everywhere) TS = tensile strength of plate (set here to propagate)	200 psi 55000 psi		
Minimum Thicknesses	Calculated	Survey	Status
Front Flue Sheet	<u>0.4034</u> in	<u>0.4560</u> in	ок
Dry Pipe	<u>0.1785</u> in	<u>0.2800</u> in	OK
Tubes - Small	<u>0.0936</u> in	<u>0.1200</u> in	OK
Tubes - Large	<u>0.1418</u> in	<u>0.1500</u> in	OK .
Longitudinal Joints & Seams Course 1	<u>0.5849</u> in	<u>0.7430</u> in	OK
Boiler Course Not At Seam Course 1	<u>0.4982</u> in	<u>0.7430</u> in	OK
Longitudinal Joints & Seams Course 2	<u>0.5992</u> in	<u>0.7550</u> in	OK
Boiler Course Not At Seam Course 2	<u>0.5091</u> in	<u>0.7550</u> in	OK
Steam Dome - Cap Dish	<u>0.2257</u> in	<u>1.2500</u> in	OK
Steam Dome - Cap Flange	<u>1,1610</u> in	<u>1.2500</u> in	OK
Steam Dome - Cylindrical Portion	<u>0.4527</u> in	<u>0.5050</u> in	OK
Steam Dome - Manhole Opening Reinforcement	<u>0.5091</u> in	<u>0.8060</u> in	OK
Outside Throat Sheet	<u>0.3043</u> in	<u>0.7410</u> in	OK
Inside Throat Sheet	<u>0.3043</u> in	<u>0.3860</u> in	OK
Rear Flue Sheet	<u>0.2259</u> in	<u>0.3860</u> in	OK
Roof Sheet	<u>0.5468</u> in	<u>0.6430</u> in	OK
Crown Sheet	<u>0,3162</u> in	<u>0.3910</u> in	OK
Side Wrapper Sheet	<u>0.3233</u> in	<u>0.6200</u> in	OK
Firebox Side Sheets	<u>0.3360</u> in	<u>0.3770</u> in	OK
Door Sheet	<u>0.2965</u> in	<u>0.3700</u> in	ОК
Backhead	<u>0.2853</u> in	<u>0.5060</u> in	ОК
Thermic Syphon - Plate	<u>0.3162</u> in	<u>0.3860</u> in	OK
Thermic Syphon - Neck	<u>0:0640</u> in	<u>0.3780</u> in	OK
Thermic Syphon - Staybolts	<u>0.8871</u> in	<u>1.0000</u> in	OK
Throat Sheet Staybolts (flexible)	<u>0.9110</u> in	<u>1.0000</u> in	OK
Throat Sheet Staybolts (solid)	<u>0.8871</u> in	<u>1.0000</u> in	OK
Side Sheet Staybolts (flexible)	<u>0.9554</u> in	<u>1.0000</u> in	OK
Side Sheet Staybolts (solid)	0.9554 in	<u>1.0000</u> in	OK
Door Sheet Staybolts (flexible)	<u>0.9096</u> in	<u>1.0000</u> in	OK
Door Sheet Staybolts (solid)	0.9096 in	<u>1,0000</u> in	ОК
Crown Sheet Staybolts	<u>0.8832</u> in	<u>1.0020</u> in	OK

Summary of Results (Continued)

Stresses	Galculated	Maximum	Status
Front Flue Brace (small)	<u>6310</u> psi	9000 psi	ОК
Front Flue Brace (large)	<u>4188</u> psi	9000 psi	OK
Throat Sheet Braces	<u>2667</u> psi	9000 psi	OK
Backhead Brace (small)	<u>5581</u> psi	9000 psi	OK
Backhead Brace (large)	<u>5757</u> psi	9000 psi	OK
Thermic Syphon - Staybolts	<u>5559</u> psi	7500 psi	OK
Throat Sheet Staybolts (flexible)	<u>5947</u> psi	7500 psi	OK
Throat Sheet Staybolts (solid)	<u>5559</u> psi	7500 psi	OK
Side Sheet Staybolts (flexible)	<u>6700</u> psi	7500 psi	OK
Side Sheet Staybolts (solid)	<u>6700</u> psi	7500 psi	OK
Door Sheet Staybolts (flexible)	<u>5924</u> psi	7500 psi	OK
Door Sheet Staybolts (solid)	<u>5924</u> psi	7500 psi	OK
Crown Sheet Staybolts	<u>5567</u> psi	7500 psi	OK
Circumferential Seams	Calculated SF	Required SF	Status
Front (Flue / 1st Course)	<u>27.94</u>	4.00	ОК
Middle (1st Course / 2nd Course)	<u>4.51</u>	4.00	ОК
Top Steam Dome	<u>7.85</u>	4.00	OK
Bottom Steam Dome	<u>8.21</u>	4,00	ОК
Heating Surfaces	Relief	Capacity	Status
Pressure Relief and Steam Generating Capacity	<u>26000</u> lbs/hr	<u>25486</u> lbs/hr	ОК

FRA Form 4

The next few pages are FRA Form. These Form 4 pages actually exist as a stand alone master file so that they can be modified directly and printed separately, if needed. The version here is automatically pulled from that master file.

FRA Form 4

BOILER SPECIFICATION CARD

Locomotive No1	3	Boiler No	46941		; D a	ate built	1	910
	ALCO							
Owned by:	Brian Fleming							
Operated by:	Fleming Locon	notive Comp						
Type of boiler:I	Radial Stayed	· · · · · · · · · · · · · · · · · · ·		Dome, when	e locate	ed: <u>On</u>	Second	Course
Where condition is cal Obvious wear and/or co	•			URVEY DA' e of the boiler so		ood - Little or no	wear and	or corrosion; Fair-
			Boiler S	Shell Sheets				
Material:	Type	of Material			on Cont	ent	\mathbf{C}	ondition
	(wrought iron,	carbon steel, or alloy	steel)					
1st course (front)	Carbon St				progres		Good	
2nd course	Carbon St	teel			progres	<u></u>	Good	
3rd course	n/a			n/a			n/a	
Rivets	Steel Documentation of	Chamanatania)			n/a	his Comme		n/a
	Documentation of	i now material	was deteri	nineu snaii de ati	acneu to t	nis torm.		
Measurements:		At Sean	n	Thinnest				
Front flue sheet,	thickness	n/a	•	0.456"				
1st course,	thickness	0.743"	_	0.743",	ID	68.5000"	, ID	68.5000"
2nd course,	thickness	0.755"		0.755",	ID	70.0000"	$\overline{}$, $\overline{}$	70.0000"
3rd course,	thickness	n/a	 -	n/a ,	ID	n/a	, ID	n/a
	ular at all poin attened, state lo	cation and a						give ID at each end
Water Space at M Width of water sp	ud Ring: Side	s <u>4"</u> ,	Front	<u>4"</u> , Back	4"	<u>.</u>		
		Firel	box and	Wrapper Sh	eets			
Firebox sheets:		ckness		Materi			Cond	ition
Rear flue sheet		<u>386" </u>		Carbon St		Goo	<u>od</u>	
Crown		391"	_	Carbon St		<u>Goo</u>		N
Sides		<u>377" </u>	-	Carbon St		<u>Goo</u>		
Door	***	<u>370" </u>	-	Carbon St	eel	Goo	od	
Combustion chamb	**********	<u>n/a</u>	_	n/a		n/a		
Inside throat	0.	386"	-	Carbon St	<u>eel</u>	Goo	od	
Wrapper sheets:								
Throat	0.	741"		Carbon St	eel	Goo	od	
Back head	0.	506"		Carbon St		Goo		
Roof		643"	•	Carbon St		Goo		
Sides	0.	620"	-	Carbon St		Goo		

Steam Dome Dome is made of Three pieces (not including seam welts, if any), Top opening diameter 18.00" Middle cylindrical portion – ID 31.13", Opening in boiler shell, longitudinally - 26.00" Condition **Dome sheets:** Thickness Material **Base** 1.211" Carbon Steel Good Middle cylindrical portion 0.505" Carbon Steel Good 1.179" Top Carbon Steel Good Lid 1.250" Carbon Steel New Boiler shell liner for steam dome opening: 0.806" Carbon Steel Good Is liner part of longitudinal seam? No Arch Tubes, Flues, Circulators, Thermic Siphons, Water Bar Tubes, Superheaters, and Dry Pipe Arch tubes: OD n/a, wall thickness n/a; number n/a; condition n/a Flues: OD 2.0000", wall thickness 0.120", length 175.0000"; number 162; condition new OD 5.3750", wall thickness 0.150", length 175.0000"; number 24; condition good OD n/a , wall thickness n/a , length n/a ; number n/a ; condition n/a Circulators: OD <u>n/a</u>, wall thickness <u>n/a</u>; number <u>n/a</u>; condition <u>n/a</u> plate thickness 0.386"; condition Good Thermic siphons: number neck OD 8.0000", neck thickness 0.378"; condition Good Water bar tubes: OD <u>n/a</u>, wall thickness <u>n/a</u> Superheater units directly connected to boiler with no intervening valve: Type n/a , Tube OD n/a , wall thickness n/a ; number n/a ; condition n/a Dry pipe subject to pressure: OD 6.5000", wall thickness 0.280", material Steel; condition Good

Stay Bolts, Crown Bar Rivets, and Braces

Stay bolts:

Smallest crown stay diameter 1.002", avg. spacing 4" X 4"; condition Good

Smallest stay bolt diameter 1.000", avg. spacing 4" X 4"; condition Good

Smallest combustion chamber stay bolt dia. n/a

avg. Spacing n/a X n/a; condition n/a

Measurement at smallest diameter

Crown bar bolts & rivets:

Roof sheet rivets, smallest dia. n/a , ave. Spacing n/a X n/a ; condition n/a
Roof sheet bolts, smallest dia n/a , ave. spacing n/a X n/a ; condition n/a
Crown sheet rivets, smallest dia. n/a , ave. Spacing n/a X n/a ; condition n/a
Crown sheet bolts, smallest dia. n/a , ave. Spacing n/a X n/a ; condition n/a

FLC #18

Braces:				Total Cross Se	ctional Area of Braces	
	Number	Total Area Stayed		Actual	Equivalent Direct Stay	
Backhead	20	1086.05 in sq_	38.8	1 in sq	38.03 in sq	
Throat sheet	10	196.00 in sq	18.7	5 in sq	18.75 in sq	
Front tube sheet		961.84 in sq	41.0	4 in sq	40.62 in sq	
	S	afety Valves, Heating	Surface, ar	d Grate Area		
Safety valves:	Total numl	oer of safety valves on l	ocomotive_	2		
Valve Size	Manufactu	rer	No. valv	es of this size a	nd manufacture	
3 1/2"	Coale		. 2			
				 		
****	particular, 20, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16				About the second of the second	
Heating Surface:						
	t of a circulat	ing system in contact on o	ne side with	water or wet stea	um being heated and on the other	
side with gas or refract	ory being coo	led, shall be measured on	the side rec	eiving heat.		
E' 1 10 1	C1 1		71.00	C .		
Firebox and Combus		er		square feet		
Flue Sheets (less flue	D areas)	1.		square feet		
Flues				square feet		
Circulators				square feet		
Arch Tubes		·		square feet		
Thermic Siphons		Landon de la companya		square feet		
Water Bar Tubes				square feet		
Superheaters (front e	nd throttle of			square feet		
Other				square feet		
Total Heat	ing Surface	18	320	square feet		
Grate area: 49.9	square	feet				
	Water Lo	evel Indicators, Fusible	e Plugs, an	d Low Water A	larms	
Height of lowest reading of gauge glasses above crown sheet: 4 ½" 4½"						
Height of lowest rea	ding of gau	ge cocks above crown	sheet: 4.0)"		
Is boiler equipped w	vith fusible]	plug(s)?	10	, number_	n/a	
Is hailer equipped y	vith low wat	er alarm(s)?	10	numher	n/a	

FLC #18

Calculations

Staybolt stresses:					
Stay bolt under greate	est load, maximum stress			5924	psi
Location S	Side Sheets				
Crown stay, crown ba	ar rivet, or crown bar bolt u	ınder greatest load, m	nax. stress	5567	psi
LocationU	<u>Jniform</u>				
Combustion chamber	stay bolt under greatest lo	ad, maximum stress		n/a_	psi
Location r	ı/a				
Braces:					
Round or rectangular	brace under greatest load,	maximum stress		6310	psi
Location I	Front Tube Sheet – Small E	Braces			_
Gusset brace under gr	reatest load, maximum stre	SS		n/a	psi
Location r	n/a	attinianita			
Shearing stress on rivets:					
	on rivets in longitudinal se			6260	psi
Location (cou	rse #) <u>Two</u>	_; Seam Efficiency_	84.96%		
Boiler shell plate tension:					
	et section of plate in longit			10913	psi
Location (cou	rse #) <u>Two</u>	_; Seam Efficiency_	84.96%		
Boiler plate and component			ength:		
Front tube sheet	<u>0.4034"</u> @ 55000psi	Rear flue sheet			5000psi
1st course at seam	0.5849" @ 55000psi	_ 1st course not at			<u> </u>
2nd course at seam	<u>0.5992" @ 55000psi</u>	2nd course not a	t seam	<u>0.5091" @ 55</u>	<u>5000ps</u> ;
3rd course at seam	<u>n/a @ n/a</u>	_ 3rd course not a	t seam	<u>n/a</u> @	n/a
Roof sheet	0.5468" @ 55000psi	_ Crown sheet		<u>0.3162" @ 55</u>	5000psi
Side wrapper sheets	0.3233" @ 55000psi	_ Firebox side she	ets	<u>0.3360" @ 55</u>	5000psi
Back head	<u>0.2853" @ 55000psi</u>	_ Door sheet		0.2965" @ 55	5000psi
Throat sheet	0.3043" @ 55000psi	Inside throat she	et	0.3043" @ 55	5000psi
Combustion chamber		_ Dome, top		<u>0.2109" @ 55</u>	5000psi
Dome, middle	0.4527" @ 55000psi	Dome, base		0.2336" (a) 55	5000psi
Arch tubes		Dome, lid		1.1610" @ 50	0000psi
Water bar tubes		Thermic siphons	\$		0000psi
Dry pipe	0.1785" @ n/a	Circulators		n/a @	n/a
V 1 1		_			
	used is greater than 50,000 ps	i for steel or greater tha	ın 45,000 psi fo	or wrought iron, suj	porting
documentation m				. B (B 4 4	
	on less than 1/4" in thickness i e threads or staybolts are cond				,
particularly where	s inteads of staybolts are cont	erneu. Appneable coue	s should be co	nsuiteu.	
Boiler Steam Generating C	anacity: 25486	pounds p	er hour	•	
Doner Stoum Generating C		poditas p	VI Hour		
The following may be used as a g					
Pounds of Steam Per Hour Per					
Hand fired		s. per hr.			
Stoker fired		lbs. per hr.			
Oil, gas or pulver	ized fuel fired 14	lbs. per hr.			

FLC #18

Record of Alterations

Description of Alteration	Date of Alteration
Firebox fitted with Nicholson Thermic Syphons. The crown stay spacing given applies to the area outside the syphon openings. The siphons are constructed of 3/8" plate and stayed with 1" diameter hollow staybolts and applied to firebox with welded butt joints. Radial stays with 1-1/16" bodies and 1-1/4" ends are applied thru syphon flanges to roof sheet.	circa 1930
	-
	and or first for the set and the set of the

Record of Waivers

	G (1 3.7		Record or waivers	,	,
Waiver No.	Section No. Affected		Scope and Co	ntent of Waiver	
					_
	- A				*********
			Account of the second of the s		
		•		rified by:	
		Jon Brewster			
this documer	verify the foregot and all necessessure of 20	sary calculations, th	s is current and accunis boiler of Locomo	trate. Based upon the information contained otive (Initial & number) #18 is safe	fc
4		Date	;	Date	
Locom	otive Owner		Locomo	tive Operator	
Make workin indicating on	ng sketch here o which courses	r attach drawing or used and give calc	f longitudinal and ci rulated efficiency of	rcumferential seams used in shell of boiler, weakest longitudinal seam.	
	mferential sean	n for the front		Longitudinal seam for 1 st and 2 nd	
of cou	urse 1.			Courses. (Steam dome is not involved). 2 nd course is weakest	
	\circ \circ \circ	0		at 84.96%.	
	2"			← 8" →	
Circu	mferential sean	n for		0 0	
1	e 1 / course 2.	1 101		0 0 0	
		0		0 0 0 0	
	່ວຸວັ	0		0 0 0	
i	2 ½,,			0 0	

Calculations

Calculation Approach

The bulk of this document describes the approach used for calculating and filling out the Form 4. In general, this is a four step process:

- 1. Select the relevant areas of calculation, engineering strategies, and formulas from the many comprehensive and less comprehensive sources. Set the formulas up, and test them.
- 2. Acquire the engine specific input data to the selected formulas. This is from direct measurement of primary geometries, and examination of specifications and blueprints.
- 3. Calculate minimum thicknesses, maximum stresses, and maximum pressures.
- 4. Take a detailed material thickness survey and compare with the calculation results.

We've chosen the formulas and interpretations of them based on reviews of the ESC (Engineering Standards Committee) document, other Form 4 work, and research at the Oregon State University engineering library. We also have access to current and old ASME sections, and a good many individuals who have been involved with locomotive refurbishment.

Direct measurements have been taken for the geometry input to the formulas. However we also have some specifications from the original work.

The following sections are the detailed calculation spreadsheets.

Plate Thicknesses of Flat Stayed Surfaces

Plate Thickness of Flat Stayed Surfaces		
Ref. ASME Code, Section III, 1952; L-31		
Inputs & Basics		
Tmin = $p \times SQRT(WP/C)$ However the output is in sixteenths of an inch, so divide answers by 16		
WP = max. allowable working pressure	<u>200</u> psi	desired
C = 125 for stays screw through plates not over 7/16" in thickness with ends riveted over.	125	
C = 135 for stays screw through plates over 7/16" in thickness with ends riveted over.	- 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 - 135 -	
C = 150 for stays screwed through plates and fitted with single nuts outside of plate.	150	
C = 165 for stays with heads not less than 1.3 times the diameter of the stays, screwed through plates or made a taper fit and having the heads formed on the stays before installing them and not riveted over, said heads being made to have a true bearing on the plate.	165	
Note: If stays are welded, the code of original construction should be consulted for formulas and factors.		
Unique to FLUE SHEETS:		
ref ASME Section 1, 1971 PFT-30.2 Stays shall be used in the tube sheets of a firetube boiler if the distance between the edges of the tube holes exceeds the maximum pitch of staybolts for the corresponding plate thickness and pressure given in PG-46.		
(Note that pitch for flue sheets is edge of tube to edge tube not center to center.)		
C = 112 for stays screwed thru plates less than 7/16" riveted over C = 120 for stays screwed thru plates over 7/16" riveted over	112 120	

Plate Thicknesses of Flat Stayed Surfaces (Continued)

Calculate Minimum Plate	I hickness	yang ing ang ang paggar
Front Flue Sheet:	spec'd thickness	<u>0.5000</u> in
(look at pitch between	selected C	120 flue sheet
brace points as well)	pitch p	5.0000 in measured
brade pointe de vien,	Tmin = p * SQRT(WP/C)/16	0.4034 in
	Timil - p SQRT(WF/C)/10	0.4034 111
Outside Throat Sheet:	anneld thickness	0.7500 in
Outside Infoat Sheet:	spec'd thickness	<u>0.7500</u> in
	selected C	135 4.0000 in measured
	pitch p	
	Tmin = p * SQRT(WP/C) / 16	0.3043 in
Inside Throat Sheet:	spec'd thickness	<u>0.5000</u> in
	selected C	135
	pitch p	4.0000 in measured
	Tmin = p * SQRT(WP/C)/16	0.3043 in
Rear Flue Sheet:	spec'd thickness	<u>0.5000</u> in
	selected C	120 flue sheet
	pitch p	2.8000 in measured
	Tmin = p * SQRT(WP/C) / 16	0.2259 in
	, , , , , , , , , , , , , , , , , , , ,	
Crown Sheet:	spec'd thickness	<u>0.3750</u> in
Grown Griedt.	selected C	125
	pitch p	4.0000 in measured
	Tmin = p * SQRT(WP/C)/16	0.3162 in
	min-p SQKT(WF/C)/10	0.3102 1()
014-10/	and a state of the	2.0050
Side Wrapper Sheets:	spec'd thickness	<u>0.6250</u> in
	selected C	135
	pitch p	4.2500 in measured
	Tmin = p * SQRT(WP/C) / 16	0.3233 in
Firebox Side Sheets	spec'd thickness	<u>0.3750</u> in
	selected C	125
	pitch p	4.2500 in measured
	Tmin = p * SQRT(WP/C)/16	0.3360 in
Thermic Syphon Plate	spec'd thickness	0.3750 in
,	selected C	125
	pitch p	4.0000 in measured
	Tmin = p * SQRT(WP/C)/16	0.3162 in
	p = =============================	0.0102 117
Door Sheet	spec'd thickness	<u>0.3750</u> in
Door Stieet	selected C	125
	· · · · · · · · · · · · · · · · · · ·	3.7500 in measured
	Tmin = p * SQRT(WP/C)/16	0.2965 in
Backhead	spec'd thickness	<u>0.5625</u> in
(look at pitch between	selected C	135
brace points as well)	pitch p	3.7500 in measured
	Tmin = p * SQRT(WP/C) / 16	0,2853 in

Diagonal Braces – Front Flue Sheet

Front Flue Sheet Brace Calculations		
The load on each individual stay shall be determined by the area supported by that stay. The overall area of the sheet will be calculated then the stress on each brace will be determined by analyzing relative percentages of area held by each stay size using smallest measured cross sections.		
P = max. allowable working pressure	<u>200</u> psi	desired
Area to be stayed		
ref. ASME Code Section 1, 1971	THE THE STREET	
PFT - 31.1 The area of a segment of a flanged head to be stayed shall be the area enclosed by lines drawn 2 in. from the tubes and a distance d from the shell. The value of d used may be the larger of the following values:		
<pre>d = the outer radius of the flange not exceeding 8 times the thickness of the head = 8t d = 80t / SQRT(P) where d = unstayed distance from shell</pre>	1.7500 in - 3.6480 in 2.5795 in	measured
t = thickness of head	<u>0.4560</u> in	linked to survey
PFT - 31.2 The area of a segment of a flanged head to be stayed shall be the area enclosed by the shell and a line drawn 2 in. from the tubes $A = 4(H - d - 2)^{2} / 3 * SQRT (2(R-d) / (H-d-2)608)$		
PFT - 31.3.2 Net area to be stayed in segment of unflanged head:		
A = 4(H - 2) ² / 3 * SQRT ((2R) / (H-2)608) d = zero for unflanged heads (input 0, or force a d by inputting any value, else "n/a" for flanged d above)	n/a in	flanged
H = distance from tubes to shell	26.4000 in	mean
R = radius of boiler head d = distance determined from PFT - 31.1, and PFT - 31.3.2	34.2500 in 2.5795 in	linked to survey
A = area to be stayed from PFT - 31.1, and PFT - 31.3.2	961.70 in ²	
dd = diameter of dry pipe through flue sheet	6.5000 in	measured
AH = half the area (one side) to be braced = $(A - pi*dd^2/4)/2$	464.26 in ²	
True formula for "Segment" (implement with $h = \text{H-2-d}$, and $R = \text{R - d}$ to account for offset above tubes, and inward from shell).		
$AT = R^{2} \cos^{-1} \left(\frac{R - h}{R} \right) - (R - h) \sqrt{2 R h - h^{2}}$	961.84 in²	
ATH = half the area (one side) to be braced = $(AT - pi*dd^2/4)/2$	464.33 in ²	

Diagonal Braces - Front Flue Sheet (Continued)

Determine the area, supported by each size brace. Multiply this area by the maximum allowable working pressure. Divide this by the smallest measured cross sectional, in square inches, of the brace supporting the section of plate considered. The result will be the stress in pounds per square inch on the brace. Divide by Cos of the angle to get true stress. This stress must not exceed 9,000 psi.		
Small Braces		
bd = smallest measured brace diameter	<u>1.2500</u> in	linked to survey
pl = percent load carried by this size brace	25 %	measured
n = number of this size brace on one side	3	actual
ba = brace angle	2 deg	actual
a = cross sectional area of single brace = pi * bd² /4	1.23 in ²	
As = area supported by single brace = $AH * (pl / 100) / n$	38.69 in ²	
S = stress on straight brace = P * As / a	6305 psi	
Sba = stress with angle, not to exceed 9,000 psi = S / Cos(ba)	6309 psi	
ATs = area supported by single brace = ATH * (pl/100) / n	38.69 in ²	
ST = stress on straight brace = P * ATs / a	6306 psi	
STba = stress with angle, not to exceed 9,000 psi = ST / Cos(ba)	6310 psi	
Large Braces		
bd = smallest measured brace diameter	<u>1.7500</u> in	linked to survey
pl = percent load carried by this size brace	75 %	measured
n = number of this size brace on one side	7	actual
ba = brace angle	9 deg	actual
$a = cross sectional area of single brace = pi * bd^2 / 4$	2.41 in ²	
As = area supported by single brace = $AH * (pl / 100) / n$	49.74 in ²	
S = stress on straight brace = P * As / a	4136 psi	
Sba = stress with angle, not to exceed 9,000 psi = S / Cos(ba)	4188 psi	
ATs = area supported by single brace = ATH * (pl / 100) / n	49.75 in ²	
ST = stress on straight brace = P * ATs / a	4137 psi	

Additional Form 4 Entries

total number of stays
total actual area of brace
total equivalent direct stay (apply Cos ba to each of the above)

STba = stress with angle, not to exceed 9,000 psi = ST / Cos(ba)

20 41.04 in² 40.62 in²

4188 psi

Dry Pipe

Dry Pipe Calculations		
The following applies to steel dry pipes with dome type throttles that are subjected to external pressure when the throttle is closed		
Inputs		
WP = working pressure t = thickness of the wall D = outside diameter of pipe	200 psi 0.2800 in 6.5000 in	desired linked to survey linked to survey
Calculate Maximum Allowable Working Pressure		
ref. ASME Code Section 1, 1971		
PFT - 15 The maximum allowable working pressure for seamless or welded flues (dry pipes) over 5 in. in diameter, and including 18 in. in diameter, shall be determined by one of the following formulas:		
0.023 * D (used below to test which equation to use)	0.1495 in	
15.1 Where the thickness of the wall is not greater than 0.023 times the diameter		
$MAWP = (10,000,000 * t^3) / D^3$	N/A psi	
15.2 Where the thickness of the wall is greater than 0.023 times the diameter	341.75 Table 1	
MAWP = (17,300 * t) / D - 275	470 psi	
MAWP selected from above	470 psi	
Calculate Minimum Thickness at Working Pressure		
Back solve 15.1 Where the thickness of the wall is not greater than 0.023 times the diameter	The second secon	
$Tmin = (P * D^3 / 10,000,000)^{1/3}$	N/A in	
Back solve 15.2 Where the thickness of the wall is greater than 0.023 times the diameter		
Tmin = (P + 275) * D / 17,300	0.1785 in	
Tmin selected from above	0.1785 in	

Tubes

Tube Calculations - Small Tubes		223
Formulas from 1952 ASME Section III		N.
Inputs		
WP = working pressure D = outside diameter of pipe t = thickness of the wall E = efficiency	200 psi 2.0000 in 0.1200 in 85.00%	desired linked to survey linked to survey for welded tubes
Calculations		
Maximum Allowable Working Pressure MAWP = 14,000 x (t - 0.065) / D	385 psi	
Minimum Wall Thickness Tmin = (D x WP / 14,000) + 0.065	0.0936 in	

Tube Calculations - Large Tubes		
Formulas from 1952 ASME Section III		
Inputs		
WP = working pressure D = outside diameter of pipe t = design thickness of the wall E = efficiency	200 psi 5.3750 in 0.1500 in 85.00%	desired linked to survey linked to survey for welded tubes
Calculations		
Maximum Allowable Working Pressure MAWP = 14,000 x (t - 0.065) / D	221 psi	
Minimum Wall Thickness Tmin = (D x WP / 14,000) + 0.065	0.1418 in	

Circumferential Joints & Seams – Flue Sheet / 1st Course

Circumferential Joints & Seams - Flue Sheet / 1st Course		3
Inputs & Basics		
WP = working pressure t= thickness of thinner shell plate TS = tensile strength of plate tfs = thickness of flue sheet d = dia. Of rivet hole = driven rivet dia. c = crush strength of plate nl = total number of rivets in one row in single shear nt = total number of rivets in entire seam in single shear D = inside diameter of larger shell course CP = circumference of larger shell I.D. = $D * pi$ F = total longitudinal force = $WP * D^2 * pi / 4$ a = cross sectional area of driven rivet = $d^2 * pi / 4$ s= shear strength rivet in single shear = $a * 44000$ (rivet tensile strength of 44,000 psi)	0.7430 in 55000 psi 0.4560 in 1.0000 in 95000 psi 110 110	desired linked to survey attested linked to survey from ASME code counted counted linked to survey
Rivet Shear, Bearing Stress, Plate Tension		
AR = cross sect. Area of rivets in shear entire seam = nt x a SR = rivet shear stress = F/AR RR = total bearing area of rivets in entire seam (substitute tfs for t when tfs <t and)="" bearing="" d="" nt="" pt="plate" rb="Rivet" stress="F/RR" t="" tension="F/(CP*t*E)</td" tfs="" x=""><td>86.39 in² 8531 psi 50.16 in² 81.73 in² 50.16 in² 14694 psi 9430 psi</td><td></td></t>	86.39 in ² 8531 psi 50.16 in ² 81.73 in ² 50.16 in ² 14694 psi 9430 psi	
Strength of Seam		
ref. From 1971 ASME Sect. I, A-2 & A-3 Lap Joint		
A = strength of solid plate = $CP * t * TS$ B = strength of plate between rivet holes in 1 row = $[CP - (d * n1)] * t * TS$ C = shear strength all rivets in single shear = $nt * s * a$ D = crush strength of plate in front of all rivets (substitute tfs for t when tfs < t) $nt * d * t * c$ $nt * d * tfs * c$ SC = minimum strength of entire seam = A, B, C, or D whichever is least	8794111 lbs 4298961 lbs 2985555 lbs 4765200 lbs 7764350 lbs 4765200 lbs 2985555 lbs	
Divided B, C, or D (whichever is least) by A, and the quotient will be the efficiency		
E= efficiency of circumferential seam lap Joint E' = lowest efficiency of seam considering <i>plate tearing only</i> = <i>B</i> / <i>A</i>	33.95% 48,88%	
Factor of Safety		
ref. 1971 ASME Sect. I, PR-17		
R = inside radius of boiler course at circumferential seam = D / 2 F = total longitudinal force on circumferential seam = pi * R² * WP SF = strength factor = SC / F SCn = minimum strength of circumferential seam required by FRA for a safety factor of 4 without considering the reduction of area or holding of flues and tubes = F x 4 Calculate total area of tube sheet supported by tube pack by describing a line 2 inches from the outside edge of the tube pack and completely surrounding the tube pack. Solve for the area inside this line, re. 1952 ASME Sect. III, L-44	34.25 in ² 737057 lbs 4.05 2948228 lbs	
Atp = area of sheet supported by flues and/or braces, sq. in. TA = total area of tube sheet, sq. in. If area supported by tube pack is 50% or more of (pi x R²) then the minimum strength of the circumferential seam must be at least 70% of SCn F1 = Force supported by the seam with flues FS = Factor of Safety = SC/F1 (considers support of tube pack and braces if appropriate)	3151 in ² 3685 in ² 106842 lbs 27.94	survey&brace calcs

FLC #18

20

Longitudinal Joints & Seams – 1st Course

Longitudinal Joints & Seams - Course 1 (Front Course)

Longitudinal Johns & Seams - Course I (Front Course)		
Inputs & Basics		
WP = working pressure	<u>200</u> psi	desired
TS = tensile strength of plate	<u>55000</u> psi	attested
t = thickness of plate b = thickness of thinnest (and usually wider, inner) buttstrap	0.7430 in 0.6120 in	min near seam
w = thickness of outer (usually thicker, and narrow) buttstrap	0.6120 in	linked to survey
P = pitch of rivets, row with greatest pitch	8.0000 in	measured
d = diameter of rivet hole = driven rivet diameter		
single shear	1.1250 in	measured
double shear	1.1250 in	measured
a = cross sectional area of driven rivet = d ² * pi / 4		
single shear	0.9940 in ²	
double shear	0.9940 in ²	
s = shear strength of rivet in single shear = $a * 44000$ (rivet tensile strength 44,000)	43737 psi	
S = shear strength of rivet in double shear = $a * 44000$ (rivet tensile strength 44,000)	87474 psi	
n = number of rivets single shear unit length of joint	7 4	actual
N = number of rivets double shear unit length of joint AR = total cross sect. Area of rivets in pitch P of seam subjected to shear stress	8.9462 in ²	actual
	THE SECOND SECON	
RR = total area of rivets in pitch P of seam subjected to bearing stress D = largest inside diameter of shell course	4.0320 in ² 68.5000 in	linked to survey
c = crush strength of plate	95000 psi	ASME code
o diameter garden	, cocco po	TOTAL GOOD
	CONTRACTOR OF THE STREET AND ASSOCIATION OF THE STREET	· · · · · · · · · · · · · · · · · · ·
Butt and Double Strap Joint Double Riveted Seam Efficiency		
		1
REF. 1971 ASME CODE SECT. I		
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet	326920 lbs	
REF. 1971 ASME CODE SECT. I	326920 lbs 280947 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one	THE REAL PROPERTY OF THE PARTY	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear	THE REAL PROPERTY OF THE PARTY	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength	280947 lbs 391278 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row	280947 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength	280947 lbs 391278 lbs 278449 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row	280947 lbs 391278 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of	280947 lbs 391278 lbs 278449 lbs 300381 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet	280947 lbs 391278 lbs 278449 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of	280947 lbs 391278 lbs 278449 lbs 300381 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = PxtxTS B = strength of plate between rivet holes outer row = (P-d) xtxTS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the efficiency of a butt- and double-strap joint, double riveted.	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs 388039 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the efficiency of a butt- and double-strap joint, double riveted. E = lowest efficiency of longitudinal joint	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs 388039 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the efficiency of a butt- and double-strap joint, double riveted.	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs 388039 lbs	
REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A = strength of solid plate = P x t x TS B = strength of plate between rivet holes outer row = (P-d) x t x TS C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear H = strength of buttstraps between rivet holes in the inner row Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the efficiency of a butt- and double-strap joint, double riveted. E = lowest efficiency where plate tearing is a consideration = A divided by the least of	280947 lbs 391278 lbs 278449 lbs 300381 lbs 383040 lbs 361108 lbs 388039 lbs	

Longitudinal Joints & Seams – 1st Course (Continued)

Calculate the Key Values	Paragraphic Control of the Control o
Plate tension at design pressure and thickness	
PT = (WP * D) / (2 * Ept * t)	10824 lbs
Maximum allowable working pressure at design thickness, and FS set to 4	
MAWP = (TS * t * E) / (D/2 * FS)	254 psi
Factor of Safety at design thickness and pressure	
FS = $(TS \times t \times E) / (D/2 \times WP)$	5.08
, , , , , , , , , , , , , , , , , , , ,	
Minimum Thickness at working pressure and safety factor of 4	
Tmin = (WP * D * FS) / (2 * TS * E)	0.5849 in
Rivet shear stress	0.402
$SR = (D \times WP \times P) / (AR * 2)$	6126 psi
Direct harving always	56.00
Rivet bearing stress	12501 poi
$RB = (D \times WP \times P) / (RR * 2)$	13591 psi

Boiler Courses Not at Seams - 1st Course

Boiler Courses Not At Seams - 1st Course (Front Course) Ref. ASME 1952 Section III, L 21 The maximum allowable working pressure on the shell of a boiler shall be determined by the strength of the weakest course, computed from the thickness of the plate, the tensile strength...,the efficiency of the longitudinal joint, the inside diameter of the course, and the factor of safety. Inputs WP = working pressure TS = tensile strength of plate <u>200</u> psi <u>55000</u> psi desired attested t = thickness of shell plates 0.7430 in linked to survey E = efficiency 100.00% no seam R = inside radius of shell 34.2500 in large end FS = minimum required Factor of Safety 4.00 minimum Calculations Calculate Maximum Working Pressure $MAWP = (TS \times t \times E) / R \times FS$ 298 psi Minimum shell thickness required for Factor of Safety $Tmin = WP \times R \times FS / (TS \times E)$ 0.4982 in Plate Tension at Working Pressure $PT = (WP \times R) / (E \times t)$ 9219 psi Factor of Safety at Working Pressure $FS = (TS \times t \times E) / (R \times WP)$

Circumferential Joints & Seams – 1st Course / 2nd Course

Circumferential Joints & Seams - 1st Course / 2nd Course	EM ACCEPTANT OF THE ACCEPTANT
Inputs & Basics	
WP = working pressure t= thickness of thinner shell plate	200 psi desired 0.7430 in calc'd from links 55000 psi attested
TS = tensile strength of plate tfs = thickness of flue sheet d = dia. Of rivet hole = driven rivet dia.	0.0000 in none 1.0000 in
c = crush strength of plate nl = total number of rivets in one row in single shear nt = total number of rivets in entire seam in single shear	95000 psi from ASME code 64 counted 128 counted
D = inside diameter of larger shell course CP = circumference of larger shell I.D. = D * pi	70.0000 in linked to survey
F = total longitudinal force = $WP * D^2 * pi/4$ a = cross sectional area of driven rivet = $d^2 * pi/4$ s= shear strength rivet in single shear = $a * 44000$ (rivet tensile strength of 44,000 psi)	769690 lbs 0.7854 in ² 34558 psi
Rivet Shear, Bearing Stress, Plate Tension	9-330 ps
AR = cross sect. Area of rivets in shear entire seam = nt x a SR = rivet shear stress = F/AR	100:53 in ² 7656 psi
RR = total bearing area of rivets in entire seam (substitute tfs for t when tfs <t and)="" d="" nt="" t<="" td="" x=""><td>95.10 in² 95.10 in²</td></t>	95.10 in ² 95.10 in ²
nt x d x tfs RB = Rivet Bearing Stress = F/RR PT = plate tension = F/(CP * t * E')	0.00 in ² 8093 psi 6644 psi
Strength of Seam	
ref. From 1971 ASME Sect. I, A-2 & A-3 Lap Joint	
A = strength of solid plate = CP * t * TS B = strength of plate between rivet holes in 1 row = [CP - (d * n1)] * t * TS C = shear strength all rivets in single shear = nt * s * a D = crush strength of plate in front of all rivets (substitute tfs for t when tfs < t) nt * d * t * c nt * d * tfs * c SC = minimum strength of entire seam = A, B, C, or D whichever is least	8986683 lbs 6371323 lbs 3474101 lbs 9034880 lbs 9034880 lbs 0 lbs 3474101 lbs
Divided B, C, or D (whichever is least) by A, and the quotient will be the efficiency	
E= efficiency of circumferential seam lap Joint E' = lowest efficiency of seam considering <i>plate tearing only</i> = <i>B / A</i>	38.66% 70.90%
Factor of Safety	
ref. 1971 ASME Sect. I, PR-17	
R = inside radius of boiler course at circumferential seam = $D/2$ F = total longitudinal force on circumferential seam = $pi * R^2 * WP$ SF = strength factor = SC/F	35.00 inf 769690 lbs 4,51
SCn = minimum strength of circumferential seam required by FRA for a safety factor of 4 without considering the reduction of area or holding of flues and tubes = F x 4 Calculate total area of tube sheet supported by tube pack by describing a line 2 inches from the outside edge of the tube pack and completely surrounding the tube pack. Solve for the area inside this line, re. 1952 ASME Sect. III, L-44	3078761 libs
Atp = area of sheet supported by flues and/or braces, sq. in. TA = total area of tube sheet, sq. in. If area supported by tube pack is 50% or more of (pi x R²) then the minimum strength of the circumferential seam must be at least 70% of SCn F1 = Force supported by the seam with flues	0.00 in ² no sheet 3848 in ² 769690 lbs
FS = Factor of Safety = SC/F1 (considers support of tube pack and braces if appropriate)	4.51

24 FLC #18

Longitudinal Joints & Seams – 2nd Course

Longitudinal Joints & Seams - Course 2 (Dome Course) Inputs & Basics WP = working pressure desired 200 psi TS = tensile strength of plate attested 55000 psi t = thickness of plate 0.7550 in min near seam b = thickness of thinnest (and usually wider, inner) buttstrap linked to survey 0.6120 in w = thickness of outer (usually thicker, and narrow) buttstrap linked to survey 0.6220 in P = pitch of rivets, row with greatest pitch 8.0000 in measured d = diameter of rivet hole = driven rivet diameter single shear 1.1250 in measured 1.1250 in double shear measured a = cross sectional area of driven rivet = d2 * pi / 4 0.9940 in² single shear 0.9940 in² double shear s = shear strength of rivet in single shear = a * 44000 43737 psi (rivet tensile strength 44,000) S = shear strength of rivet in double shear = a * 44000(rivet tensile strength 44,000) 87474 psi n = number of rivets single shear unit length of joint actual N = number of rivets double shear unit length of joint actual 8.9462 in² AR = total cross sect. Area of rivets in pitch P of seam subjected to shear stress 4.0860 in² RR = total area of rivets in pitch P of seam subjected to bearing stress D = largest inside diameter of shell course 70.0000 in linked to survey c = crush strength of plate 95000 psi ASME code Butt and Double Strap Joint Double Riveted Seam Efficiency REF. 1971 ASME CODE SECT. I ref. A-6, page 9, Form 4 calc. Booklet A =strength of solid plate $= P \times t \times TS$ 332200 lbs B = strength of plate between rivet holes outer row = $(P-d) \times t \times TS$ 285484 lbs C = shearing strength of two rivets in double shear, plus the shearing strength of one rivet in single shear 391278 lbs D = strength of plate between rivet holes in the second row, plus the shearing strength of one rivet in single shear in the outer row 282244 lbs E = strength of plate between rivet holes in the second row, plus the crushing strength of buttstrap in front of one rivet in the outer row 304176 lbs F = crushing strength of plate in front of two rivets, plus the crushing strength of buttstrap in front of one rivet 388170 lbs G = crushing strength of plate in front of two rivets, plus the shearing strength of one rivet in single shear 366238 lbs H = strength of buttstraps between rivet holes in the inner row 390253 lbs Divide B,C,D,E,F,G,or H (whichever is the least) by A, and the quotient will be the efficiency of a butt- and double-strap joint, double riveted. E = lowest efficiency of longitudinal joint 84.96% Ept = efficiency where plate tearing is a consideration = A divided by the least of B, D, E, or H 84.96%

Longitudinal Joints & Seams – 2nd Course (Continued)

Calculate the Key Values	
Plate tension at design pressure and thickness PT = (WP * D) / (2 * Ept * t)	10913 lbs
Maximum allowable working pressure at design thickness, and FS set to 4 **MAWP = (TS * t * E) / (D/2 * FS)	252 psi
Factor of Safety at design thickness and pressure FS = (TS x t x E) / (D/2 x WP)	5.04
Minimum Thickness at working pressure and safety factor of 4 **Tmin = (WP * D * FS) / (2 * TS * E)	0.5992 in
Rivet shear stress $SR = (D \times WP \times P) / (AR * 2)$	6260 psi
Rivet bearing stress RB = (D x WP x P) / (RR * 2)	13705 psi

FLC #18

26

Boiler Courses Not at Seams – 2nd Course

Boiler Courses Not At Seams - 2nd Course (Dome Course)		
Ref. ASME 1952 Section III, L 21 The maximum allowable working pressure on the shell of a boiler shall be determined by the strength of the weakest course, computed from the thickness of the plate, the tensile strength,the efficiency of the longitudinal joint, the inside diameter of the course, and the factor of safety.		
Inputs		
WP = working pressure TS = tensile strength of plate t = thickness of shell plates E = efficiency R = inside radius of shell FS = minimum required Factor of Safety	200 psi 55000 psi 0.7550 in 100.00% 35.0000 in 4.00	desired attested linked to survey no seam linked to survey minimum
Calculations		
Calculate Maximum Working Pressure MAWP = (TS x t x E) / R x FS	297 psi	
Minimum shell thickness required for Factor of Safety Tmin = WP x R x FS / (TS x E)	0.5091 in	
Plate Tension at Working Pressure PT = (WP x R) / (E x t)	9272 psi	
Factor of Safety at Working Pressure FS = (TS x t x E) / (R x WP)	5.93	

Circumferential Joints & Seams – Dome Top

Circumferential Joints & Seams - Dome Top Seam	
Inputs & Basics	Park Machine State (Proc.)
WP = working pressure	200 psi desired
t= thickness of thinner shell plate	0.5050 in calc'd from links
TS = tensile strength of plate	55000 psi attested
tfs = thickness of flue sheet	0.0000 in none 1.0000 in measured
d = dia. Of rivet hole = driven rivet dia. c = crush strength of plate	95000 psi from ASME code
nl = total number of rivets in one row in single shear	44 counted
nt = total number of rivets in entire seam in single shear	44 counted
D = inside diameter of larger course	31.1250 in linked to survey
CP = circumference of larger shell I.D. = D * pi	97.78 in
F = total longitudinal force = $WP * D^2 * pi/4$ a = cross sectional area of driven rivet = $d^2 * pi/4$	152173 lbs 0.7854 in ²
s= shear strength rivet in single shear = a * 44000 (rivet tensile strength of 44,000 psi)	0.7654 iii 34558 psi
3- Shear Stronger Meet in Single Shear - 4 -77900 (Meet Chishe Stronger of -7,000 po)	9 000 K 9
Rivet Shear, Bearing Stress, Plate Tension	
AD	0.1 FO 1.2
AR = cross sect. Area of rivets in shear entire seam = nt x a SR = rivet shear stress = F/AR	34:56 inf 4403 psi
RR = total bearing area of rivets in entire seam (substitute tfs for t when tfs <t and)<="" td=""><td>22.22 in²</td></t>	22.22 in ²
nt x d x t	22.22 in ²
nt x d x tfs	0.00 in ²
RB = Rivet Bearing Stress = F/RR	6848 psi
PT = plate tension = F/(CP * t * E')	5603 psi
Strength of Seam	
ref. From 1971 ASME Sect. I, A-2 & A-3 Lap Joint	
A = strength of solid plate = CP * t * TS	2715897 lbs
B = strength of plate between rivet holes in 1 row = $[CP - (d * n1)] * t * TS$	1493797 lbs
C = shear strength all rivets in single shear = <i>nt</i> * <i>s</i> * <i>a</i> D = crush strength of plate in front of all rivets (substitute tfs for t when tfs < t)	1194222 lbs 2110900 lbs
t = 0 usin strength of place in none of all tivels (substitute its for twitch its t)	2110900 lbs
nt * d * tfs * c	0 lbs
SC = minimum strength of entire seam = A, B, C, or D whichever is least	1194222 lbs
Divided B, C, or D (whichever is least) by A, and the quotient will be the efficiency	
E= efficiency of circumferential seam lap Joint	43.97%
E' = lowest efficiency of seam considering <i>plate tearing only</i> = B / A	55.00%
Factor of Safety	
ref. 1971 ASME Sect. I, PR-17	
D - incide radius of bailor paying at size informatic conv 5 / 6	15.56 in²
R = inside radius of boiler course at circumferential seam = $D/2$ F = total longitudinal force on circumferential seam = $\rho i * R^2 * WP$	15:56:ID 152173 lbs
$F = \text{total longitudinal lorce of Circumsteritial seam } - \mu F$ $SF = \text{strength factor} = SC / F$	7.85
SCn = minimum strength of circumferential seam required by FRA for a safety factor of 4	1. T
without considering the reduction of area or holding of flues and tubes = F x 4	608693 lbs
Calculate total area of tube sheet supported by tube pack by describing a line 2 inches	
from the outside edge of the tube pack and completely surrounding the tube pack.	
Solve for the area inside this line, re. 1952 ASME Sect. III, L-44 Atp = area of sheet supported by flues and/or braces, sq. in.	0.00 in ² no sheet
Atp = area of sneet supported by flues and/or braces, sq. in. TA = total area of tube sheet, sq. in.	761: in ²
If area supported by tube pack is 50% or more of ($pi \times R^2$) then the minimum	. ~
strength of the circumferential seam must be at least 70% of SCn	
F1 = Force supported by the seam with flues	152173 lbs
FS = Factor of Safety = SC/F1 (considers support of tube pack and braces if appropriate)	7.85

28 FLC #18

Circumferential Joints & Seams – Dome Bottom

Circumferential Joints & Seams - Dome Bottom Seam	MINISTRAL KINGS	
Inputs & Basics		
WP = working pressure t= thickness of thinner shell plate TS = tensile strength of plate	200 psi 0.5050 in 55000 psi	desired calc'd from links attested
tfs = thickness of flue sheet d = dia. Of rivet hole = driven rivet dia. c = crush strength of plate nl = total number of rivets in one row in single shear	0.0000 in 1.0000 in 95000 psi 53	none measured from ASME code counted
nt = total number of rivets in entire seam in single shear D = inside diameter of larger course CP = circumference of larger shell I.D. = D * pi	53 <u>32.1250</u> in 100.92 in	counted linked to survey
F = total longitudinal force = $WP * D^2 * pi/4$ a = cross sectional area of driven rivet = $d^2 * pi/4$ s= shear strength rivet in single shear = $a * 44000$ (rivet tensile strength of 44,000 psi)	162109 lbs 0.7854 in ² 34558 psi	
Rivet Shear, Bearing Stress, Plate Tension		
AR = cross sect. Area of rivets in shear entire seam = nt x a SR = rivet shear stress = F/AR RR = total bearing area of rivets in entire seam (substitute tfs for t when tfs <t and)<="" td=""><td>41,63 in² 3894 psi 26,77 in²</td><td></td></t>	41,63 in ² 3894 psi 26,77 in ²	
nt x d x t nt x d x tfs RB = Rivet Bearing Stress = F/RR PT = plate tension = F/(CP * t * E')	26,77 in ² 0,00 in ² 6057 psi 6698 psi	
Strength of Seam		
ref. From 1971 ASME Sect. I, A-2 & A-3 Lap Joint		
A = strength of solid plate = $CP * t * TS$ B = strength of plate between rivet holes in 1 row = $[CP - (d * n1)] * t * TS$ C = shear strength all rivets in single shear = $nt * s * a$ D = crush strength of plate in front of all rivets (substitute tfs for t when tfs < t) $nt * d * t * c$ $nt * d * tfs * c$ SC = minimum strength of entire seam = A, B, C, or D whichever is least	2803155 lbs 1331080 lbs 1438495 lbs 2542675 lbs 2542675 lbs 0 lbs 1331080 lbs	
Divided B, C, or D (whichever is least) by A, and the quotient will be the efficiency		
E= efficiency of circumferential seam lap Joint E' = lowest efficiency of seam considering <i>plate tearing only</i> = B / A	47.49% 47.49%	
Factor of Safety		
ref. 1971 ASME Sect. I, PR-17		
R = inside radius of boiler course at circumferential seam = $D/2$ F = total longitudinal force on circumferential seam = $pi * R^2 * WP$ SF = strength factor = SC/F	16.06 in ² 162109 lbs 8.21	
SCn = minimum strength of circumferential seam required by FRA for a safety factor of 4 without considering the reduction of area or holding of flues and tubes = F x 4 Calculate total area of tube sheet supported by tube pack by describing a line 2 inches from the outside edge of the tube pack and completely surrounding the tube pack. Solve for the area inside this line, re. 1952 ASME Sect. III, L-44	648435 lbs	
Atp = area of sheet supported by flues and/or braces, sq. in. TA = total area of tube sheet, sq. in. If area supported by tube pack is 50% or more of (pi x R²) then the minimum strength of the circumferential seam must be at least 70% of SCn	0.00 in ² 814 in ²	no sheet
F1 = Force supported by the seam with flues FS = Factor of Safety = SC/F1 (considers support of tube pack and braces if appropriate)	162109 lbs 8.21	Y.

Longitudinal Joints & Seams – Steam Dome

Longitudinal Jointe & Soams - Domo		
Longitudinal Joints & Seams - Dome		
	The second second	
Inputs & Basics		
WP = working pressure	<u>200</u> psi	desired
TS = tensile strength of plate	55000 psi	attested
t = thickness of plate P = pitch of rivets	<u>0.5050</u> in 2.2500 in	min near seam measured
d = diameter of rivet hole = driven rivet diameter	1.1250 in	measured
$a = cross sectional area of driven rivet = d^2 * pi/4$	0.9940 in ²	modearea
s = shear strength of rivet in single shear = a * 44000 (rivet tensile strength 44,000)	43737 psi	
n = number of rivets in single shear per unit length of joint	1	actual
N = number of rivets double shear unit length of joint	0	actual
AR = total cross sect. Area of rivets in pitch P of seam subjected to shear stress	0.9940 in ²	
D = largest inside diameter of shell course	<u>31,1250</u> in	linked to survey
c = crush strength of plate	95000 psi	ASME code
Lap Joint Longitudinal Single Riveted Seam Efficiency	en company and a second	
REF. 1971 ASME CODE SECT. I		
A = strength of solid plate = PxtxTS	62494 lbs	
B = strength of plate between rivet holes outer row = (P-d) x t x TS	31247 lbs 43475 lbs	
C = shearing strength of one rivet in single shear = n x s x a D = crush strength of plate in front of 1 rivet = d x t x c	53972 lbs	
D - dustriation grate in notic of 1 mod - dx tx 6	20012103	
Divide B,C,or D (whichever is the least) by A, and the quotient will be the efficiency of a single riveted lap joint.		
E = lowest efficiency of longitudinal joint	50.00%	
Ept = efficiency where plate tearing is a consideration = B / A	50.00%	
Calculate the Key Values		rai
Plate tension at design pressure and thickness		
PT = (WP * D) / (2 * Ept * t)	12327 lbs	20
7 1 - (107 D) 7 (2 D) 5 4	12027 103	
Maximum allowable working pressure at design thickness, and FS set to 4		
MAWP = (TS * t * E) / (D/2 * FS)	223 psi	
Factor of Safety at design thickness and pressure		
$FS = (TS \times t \times E) / (D/2 \times WP)$	4.46	
Minimum Thickness at working pressure and safety factor of 4		
Tmin = (WP * D * FS) / (2 * TS * E)	0.4527 in	
Rivet shear stress		
$SR = (D \times WP \times P) / (AR * 2)$	7045 psi	

Dome Cylinder

Cylindrical Portion of Dome		*
Ref. ASME Section III, 1952, L-21		
Inputs & Basics		
WP = working pressure TS = tensile strength of plate If cylindrical section has a forge-welded longitudinal joint use 35,000 (ref L-29) tt = thickness of shell top plate tm = thickness of shell middle plate tb = thickness of shell bottom plate Et = efficiency of longitudinal joint for top Em = efficiency of longitudinal joint for middle Eb = efficiency of longitudinal joint for bottom Rt = inside radius of cylindrical section (top) Rm = inside radius of cylindrical section (middle)	200 psi 55000 psi 1.1790 in 0.5050 in 1.2110 in 100.00% 50.00% 100.00% 14.5000 in 15.5625 in	desired attested linked to survey linked to survey no seam linked to calculat no seam measured measured
Rb = inside radius of cylindrical section (base) FS = factor of safety	16.0625 in 4.00	measured required
Calculations		
Top Maximum allowable working pressure MAWP = (TS x t x E) / (R x FS) =	1118 psi	
Minimum thickness for cylinder $Tmin = (WP \times R \times FS) / (TS \times E)$	0.2109 in	
Middle Maximum allowable working pressure MAWP = (TS x t x E) / (R x FS) =	223 psi	
Minimum thickness for cylinder Tmin = (WP x R x FS) / (TS x E)	0.4527 in	
Base Maximum allowable working pressure MAWP = (TS x t x E) / (R x FS) =	1037 psi	
Minimum thickness for cylinder $Tmin = (WP \times R \times FS) / (TS \times E)$	0.2336 in	

Dome Manhole Opening

Steam Dome / Manhole Opening Reinforcement

Ref. ASME Code Section III, 1952 Locomotive Boilers L-30, para. 3 - When boiler shells are cut to apply steam domes or manholes, the net area of metal, after rivet holes are deducted, in flange and liner, if used, must be not less than the area required by these rules for a length of boiler shell equal to the length removed. A height of vertical flange equal to 3 times the thickness of the flange shall be included in the area of the flange.

Since these are design calculations the shell thickness t is assumed to be that which is required for a given efficiency. If the dome is at the longitudinal seam the efficiency used to calculate t shall be the efficiency of the seam, otherwise 1.00 shall be used for E.

Inputs

WP = working pressure

TS = tensile strength of plate

E = efficiency

IR = largest inside radius of shell at dome opening

FS = Factor of safety = (supply for FS desired)

200 psi 55000 psi 100.00% 35.0000 in 4.00 desired attested not on seam linked to survey minimum

t' = flange thickness

t" = liner thickness

L = dome opening

L' = liner length front

L" = liner length rear

f = flange bottom

R = inside radius of flange

f' = flange top

d = rivet hole dia.

1.2110 in linked to survey 0.8060 in linked to survey 26.0000 in measured 12.5000 in measured 14.6750 in measured 6.0000 in measured 1.0000 in measured not used n/a in 1.1250 in measured

Dome Manhole Opening (Continued)

Calculations	
shell thickness required in dome opening area $t = IR \times FS \times WP/(TS \times E)$	0.5091 in
Ref. ASME Code Section III, 1952, Locomotive Boilers, L-30	
area of shell material on longitudinal center line requiring compensation $MR = L x t$	13.24 in ²
flange bend area allowed for compensation $RA = [(R+t')^2 \times pi] - [R^2 \times pi] / 2$	6,11 in ²
vertical portion of flange allowed for compensation $VA = 2(t'x \ 3 \ t' - t'x \ (t' + R))$	3.44 in ²
horizontal portion of flange allowed for compensation = $FA = 2[(f-d) \times t]$	11.81 in ²
liner area allowed for compensation - since the liner boundary is unstated it will be assumed that the liner extends no further than L distance longitudinally on either side of vertical center of shell opening $LA = (L'x t'' + L''x t'') - 2 dt''$	20.09 in ²
total compensation available	
TC = LA + FA + VA + RA	41.45 in ²
TC must be equal to or greater than MR	OK

Top Dome Flange

Top Dome Flange

The dome flange will be analyzed as an unsupported flange from the start of the radius on the cylindrical portion of the dome to the gasket centerline on the top of the flange.

Area to be stayed

P = max. allowable working pressure

ref. ASME Code Section I, 1971

PFT - 31.1 The area of a segment of a flanged head to be stayed shall be the area enclosed by lines drawn through the center of dome and a distance d from the shell as shown in Fig. 1. The value of d used may be the larger of the following values:

d = the outer radius of the flange not exceeding 8 times the thickness of the head = 8t d = 80t / SQRT(P)

where d = unstayed distance from shell t = thickness of head

PFT - 31.3.1 Net area to be stayed in segment of flanged head: $A = 4(H - d)^2 / 3 * SQRT (2(R-d) / (H-d) - 0.608)$

H = distance from chord to shell (radius in this case)

R = radius of dome just at start of flange

d = distance determined from PFT - 31.1, and PFT - 31.3.2

A = half the area to be stayed PFT - 31.3.1

AS = area to stayed = 2 * A

Find the diameter of the circle encompassing area AS:

D = 2 * SQRT(AS/pi)

<u>200</u> psi		desired
	4	

ar a dina ana ana ana

100

4.5000 in	measured
9.4320 in	
6.6694 in	
1.1790 in	linked to survey
	7. 9.
14 5000 in	linked to survey
<u>14.5000</u> in <u>14.5000</u> in	linked to survey linked to survey
14.5000 in 6.6694 in	i i
14.5000 in 6.6694 in 96.46 in ²	i i
14.5000 in 6.6694 in	i i
14.5000 in 6.6694 in 96.46 in ²	i i
14.5000 in 6.6694 in 96.46 in ²	i i

Evaluation

If D is smaller than the diameter of the gasket centerline, the flange cover (dome lid) in combination with the torus (top dome flange) must be adequate to support the load. If D is larger than the diameter of the gasket centerline, redesign is required.

G = diameter of gasket centerline

Test for acceptable design (D < G)

<u>19.0000</u> in

linked to survey

OK

34 FLC #18

Dome Cap

Dome Cap - Dish Portion

Dome Cap Thickness - Calculation for Dished Head

Ref. ASME Section I, 1971, PG-29 DISHED HEADS

The thickness of a blank unstayed head with the pressure on the concave side, when it is a segment of a sphere, shall be calculated by the following formula:

Tmin = (5 * WP * L) / (4.8 * S * E)

		4		

WP = maximum allowable working pressure (hydrostatic head loading need not be included)

L = radius to which the head is dished, measured on the concave side of the head (calculated below)

S = maximum allowable stress, psi, using values given in Table PG-23.1 (for FRA locomotives, ref. 49 CFR, Part 230.24(a); The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate tensile strength of its material.)

E = efficiency of weakest joint used in forming the head; for seamless heads = 100 percent (1.00 unity)

C = inside dish chord length

b = bump of head (inside top of dish to chord)

	6
200 mai	desired
<u>200</u> psi	desired
12500 psi	new
po.	
100%	seamless
<u>17.0000</u> in	measured
3.0000 in	measured
, 	

Calculations

Calculation of radius of sphere of concave side of dished dome head

make radius L = hypotenuse of right triangle then, L squared = (C/2)*(C/2)+(L-b)*(L-b)2 Lb = (C * C) / 4 + (b * b)L = (C * C) / 8b + b / 2

Minimum thickness of plate

 $Tmin = (5 \times WP \times L) / (4.8 \times S \times E)$

13.5417 in

0.2257 in

Dome Cap - Flange Portion

The twisting forces on the flange are due to the bolt circle being outside the gasket. We will perform the calculations in the classic ESC manner and generate a Tmin. This will be followed by a couple of check calculations.

- 1. Between the bolts, the forces on the lid push up on the flange. Model a circumferential unit section as a beam with a fixed end point at a bolt and a guided endpoint in the middle of the gap that lifts up but whose end point remains horizontal (diagram provided). Assume Tmin from the classic ESC calculation, and calculate stress and flexure.
- 2. From the bolts radially inward to the start of the dish is an upward force. Model a radial unit section as a cantilevered beam (diagram provided). Assume Tmin from the classic ESC calculation, and calculate stress and flexure.

If it turns out that the stresses are low and the flexing negligible for check cases #1 and #2, then the ESC twisting forces analysis is good. If the stresses are high and / or the flexing significant, we will need to consider an alternate approach.

Note that the ESC calculations did show that the original cap / lid flange was undersized for a safety factor of 4. The test formula also showed that the stress levels were too high. A new lid with a thicker flange has been constructed to meet these requirements. As it is of "unknown steel", 50,000 psi is assumed for the tensile strength.

FLC #18

Flange Thickness Due to Twisting Forces

Pome Cap Flange Thickness Considering Twisting Forces Ref. ASME Section VIII, 1995, 1-6, 2-6 Dished Heads FIG. 1 Ring Gasket Shown T* = T≥t T* = T≥t

Inputs & Basics

WP = maximum allowable working pressure

G = diameter of gasket centerline

b = effective gasket seating surface width

L = inside spherical or crown radius of curvature.

B = chord length between intersection points of arc L with bottom face of flange

C = bolt circle centerline diameter

S = stress value at design temperature, psi (for FRA locomotives, ref. 49 CFR, Part 230.24(a); The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate tensile strength of its material) -{ 50,000 psi for unknown steel}

total number of dome bolts minimum diameter of bolts (bottom of thread if that's least size) A_b = total area of bolts

m = gasket factor = 4.75 for soft copper or brass
 y = gasket or joint-contact-surface unit seating load (13,000 for soft copper)

 S_a = allowable bolt stress at atmospheric temperature (ref. 49 CRF Part 230.24(a) =

 S_b = allowable bolt stress at design temperature (CFR 49 230.24a

<u>200</u> psi	desired
19.0000 in	measured
0.3750 in	measured
g	linked
13.5417 in	
<u>17.0000</u> in	measured
<u>21.0000</u> in	measured
12500 psi	new
24	counted
<u>0.6750</u> in	measured
8.5883 in ²	
0.0000 //	
4.75	soft copper
13000 psi	soft copper
9000 psi	
Đ	
9000 psi	

Flange Thickness Due to Twisting Forces

Calculations	
H = total hydrostatic end force = $pi * G^2 / 4 * WP$	56706 lbs
H_D = hydrostatic end force on area inside of flange = $pi * B^2 / 4 * WP$ H_G = gasket load (difference between flange design bolt load and total	45396 lbs
hydrostatic end force) = W - H (using the higher value of W below)	127437 lbs
H _P = total joint-contact surface compression load = 2b * pi * GmP	42529 lbs
H _T = difference between total hydrostatic end force and hydrostatic end	
force on the area inside of flange. = H - H _D	- 11310 lbs
•	
h_D = radial distance from bolt circle, to the circle on which H_D acts	and the second s
= (C - B) / 2	2.0000 in
h _G = radial distance from gasket load reaction to the bolt circle = (C - G) / 2	1,0000 in
h_T = radial distance from the bolt circle to the circle on which H_T acts.	1,0000
$= (h_D + h_G)/2$	1.5000 in
W _{m1} = minimum required bolt load for the operating conditions	
$W_{m1} = H + H_P$	99235 lbs
W _{m2} = minimum required bolt load for gasket seating	200000 15-
$W_{m2} = pi * bGy$	290990 lbs
A _{m1} = total cross-sectional area of bolts at root of thread or section of	And the second of the second o
least diameter under stress, required for the operating conditions,	
$=W_{m1}/S_b$	11.03 in ²
A _{m2} = total cross-sectional area of bolts at root of thread or section of	
least diameter under stress, required for gasket seating	32.33 in ²
= W_{m2}/S_a (This value may be higher than the actual bolt area available, A_b , reflecting the higher stress imparted during gasket	32.33 III
seating. This value should not be so high as to indicate that the	
stress in the bolts cause them to reach the yield strength of the bolt	186 (4 to 1871)
material.)	
A _m = total required cross-sectional area of blots, taken as the greater of	32.33 in ²
A _{m1} and A _{m2}	32,33 01
flange design bolt load W	
$W = W_{m1}$ for operating conditions;	99235 lbs
$W = ((A_m + A_b)S_a)/2$ for gasket seating	184142 lbs
M_D = component of moment due to H_D . = $H_D * h_D$	90792 in lbs
M_G = component of moment due to H_G . = H_G * h_G	127437 in lbs
$\mathbf{M}_{\mathrm{T}} = \text{component of moment due to } \mathbf{H}_{\mathrm{T}} = \mathbf{H}_{\mathrm{T}} * \mathbf{h}_{\mathrm{T}}$	16965 in lbs
M _O = the higher value obtained considering gasket seating or	235193 in lbs
operating conditions.	
M_O total moment for operating conditions = $M_D + M_G + M_T$	235193 in lbs
M _O for gasket seating = W * ((C-G) / 2)	184142 in lbs
$O = (DI/AS) \times ((C + D)/(7C - 5D))$	0.0332 in
$Q = (PL/4S) \times ((C + B) / (7C - 5B))$	UI SCOULU
$Tmin = Q + SQRT ((1.875 M_O (C + B)) / SB(7C - 5B))$	1.1610 in

Between adjacent bolts as a Beam

Some assumptions for this "beam" analysis:

- 1. The "beam" will be the section of flange along the bolt centerline to the midway point between bolts. This beam will be analyzed as fixed at the bolt end and guided at midpoint. That is, both "ends" remain horizontal. The center point between the bolts is trying to lift up.
- 2. The load carried between the bolts by the flange will include the upward force from the working pressure on the lid plus the gasket sealing force.
- 3. Divide the whole load by the number of bolts and again in half (since the "beam" is only to the half way point). Use the resulting load as a distributed load on the "beam".
- 4. Assume the cross section of the flange is the only material taking all the stress. No additional rigidity due to the dish material is used. This is worse that the real case.
- 5. Using the minimum thickness from the classic twisting forces based calculation, determine the stresses, and deviations.

Between adjacent bolts as a Beam (Continued)

Inputs & Basics		賴
Young's modulus of elasticity (E) for carbon steel	2.90E+07 psi	conservative
L = length (from bolt to center of "span")	1.3744 in	calc from links
b = base (width of flange from outer edge to start of dish)	4.50 in	measured
h = height (thickness of flange)	<u>1.1610</u> in	minimum
d = distance from the neutral (no stress) axis to extreme fiber (edge)	0.5805 in	symmetrical cross sec
W = load on span (total force on lid / # of bolts) / 2	2067. lbs	calculated from links
Calculations		
Moment of inertial (second moment of area)		
$M = b * h^3 / 12$	0.5868 in ⁴	
<i></i>		
Section modulus of the cross-section of the flange		
Z = M / d	1.0109 in ³	
Highest stress	The state of the s	
S = W * L / (3 * Z)	937 psi	
Deflection at mid point between bolts		
$D = W * L^3 / (24 * E * M)$	0.000013 in	
Conclusion: stress is well below strength for this material, and the lift off		
amount is negligible. No loss of seal will occur.		

Between the bolts and dish edge as a Beam

Dome Cap Flange Thickness - Check for Behavior Between Bolts and Dish

One of the classic beam types is cantilevered with the load W on the end.

If we flip the diagram around and model our flange from bolt to edge of the dish, we can calculate possible lift at the dish start, and maximum flange stresses. Load 1 will be the force from the working pressure. Load 2 will be from the gasket.

Equations of interest (from www.engineersedge.com):

Highest stress (at the bolt, or fixed end of the "beam")

S = W * L / Z

Deflection at the unsupported end (start of dish)

$$D = W * L^3 / (3 * E * M)$$

Moment of inertial (second moment of area)

$$M = b * h^3 / 12$$

E = Young's modulus of elasticity

Z = section modulus of the cross-section of the "beam"

Z = M/d

d = distance from the neutral axis to extreme fiber (edge)

Some assumptions for this "beam" analysis:

- 1. The "beam" will be the section of flange from the bolt centerline to the start of the dished section. This beam will be analyzed as a cantilever fixed at the bolt end and free at the dish end.
- 2. The results will be a super-position of the working pressure and gasket loads.
- 3. Divide the loads by the number of bolts. Use the resulting loads as point loads at the respective places.
- 4. Using the minimum thickness from the classic twisting forces based calculation, determine the stresses, and deviations.

Between the bolts and dish edge as a Beam (Continued)

Inputs & Basics		s e
Young's modulus of elasticity (E) for carbon steel	2.90E+07 psi	conservative
b = base (distance between bolts)	u	calc from links
h = height (thickness of flange)	<u>1.1610</u> in 0.5805 in	minimum
d = distance from the neutral (no stress) axis to extreme fiber (edge)	U. CUOC.U	symmetrical cross sec.
L ₁ = length (from bolt to start of dish)	2.0000 in	calc from links
W_1 = hydrostatic end force = $pi * G^2 / 4 * WP / # of bolts$	2363 lbs	calculated from links
VV - Hydrostatio cha loroc pr o 7 + W 7 m or some	Lacens - 1 - Comme	Calculated from links
L ₂ = length (from bolt to gasket)	1.0000 in	calç from links
W ₂ = joint-contact surface compression load = 2b * pi * GmP / # of bolts	1772 lbs	calculated from links
,,		
Calculations		
Moment of inertial (second moment of area)		
$M = b * h^3 / 12$	0.3585 in⁴	
Section modulus of the cross-section of the flange		
Z = M/d	0.6175 in ³	
2 - m / u	COTTO III	
Highest stress is at the bolt		
$S_1 = W_1 * L_1 / Z$	7652 psi	
$S_2 = W_2 * L_2 / Z$	2870 psi	
S=S ₁ +S ₂ (Superposition)	10522 psi	
Deflection at inner edge of flange		
$D_1 = W_1 * L_1^3 / (3 * E * M)$	0,000606 in	
$D_2 = W_2 * L_2^3 / (3 * E * M)$	0.000057 in	
D=D ₁ +D ₂ (Superposition)	0.000663 in	
,		2
Conclusion: stress is below strength for this material, and the deflection	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
is negligible.		

Conclusion for Flange Calculations

The results are that the ESC flange thickness due to twisting forces calculation does give a conservative Tmin for the flange.

Throat Sheet Braces

Throat Sheet Brace Calculations		
The load on each individual stay shall be determined by the area supported by that stay. In this case, the throat stay that supports the largest area will analyzed along with the smallest stay cross sectional area.		
This stress must not exceed 9,000 psi.		
Inputs & Basics		
WP = working pressure A = maximum area supported by one brace a = smallest measured brace cross section AS = allowable stress	200 psi 25.00 in ² 1.8750 in ² 9000 psi	desired measured linked to survey maximum
Calculations		到
Maximum allowable working pressure at maximum stress MAWP = AS * a / A	675 psi	
Stress at desired working pressure S = WP * A / a	2667 psi	
Additional Form 4 Entries		
AT = total area stayed n = number of stays at = total area of brace = n * a	196.00 in ² 10 18.75 in ²	WxH measured counted

Wrapper Sheet - Roof

Roof Sheet Thickness Calculations		
Ref. ASME Code, Section III, 1952; L -43 (a) The maximum allowable working pressure for any curved stayed surface subject to internal pressure shall be obtained by the three		
following methods, and the minimum value obtained shall be used:		
General Inputs & Basics		a.
WP = Desired working pressure	<u>200</u> psi	desired
TS = tensile strength of wrapper sheet	55000 psi	attested
FS = factor of safety = 4 minimum	4	minimum
SA = allowable stress in plate = TS / FS	13750 psi	
R = inside radius of wrapper sheet	35.7500 in	measured
t = thickness of wrapper sheet	0.6430 in 10.29 16ths	linked to survey
T = thickness of wrapper sheet in sixteenths of an inch	10.23 10015	
p = minimum longitudinal pitch	4.0000 in	measured
d = maximum diameter of holes through sheet for staybolts, staybolts		
sleeves, or rivets	1.7500 in	measured
		100 100 100 100 100 100 100 100 100 100
E = equivalent longitudinal efficiency of weakest part of wrapper sheet (example: through staybolt holes of roof sheet)		
ref. ASME 1971, PG-52		
E = (p - d)/p	56.25%	
- u -y -r		
Method 1 for Maximum Allowable Working Pressure		**
Method (1) Maximum allowable working pressure shall be computed without allowing for the holding power of the stays, due allowance being made for the weakening effect of the holes for the stays or riveted longitudinal joint or other construction (P1). To this pressure there shall be added the pressure secured by the formula for braced and stayed surfaces given in Pr. L-31, using 80 for the value of C (P2).		
ref. L-21		
$P1 = (TS \times t \times E) / (R \times FS)$	139 psi	
ref. L-31		
 p = maximum pitch measured between straight lines passing through the centers of the staybolts in the different rows, which lines may be horizontal, vertical, or inclined C = 80 	8 in 80	measured given
$P2 = C \times (T^2/p^2)$	132 psi	
MAWP = P1 + P2	271 psi	

Wrapper Sheet - Roof (Continued)

Method 2 for Maximum Allowable Working Pressure

L-43 (a) Method (2)

The maximum allowable working pressure shall be computed without allowing for the holding power of the stays, due allowance being made for the weakening effect of the holes for the stays or riveted longitudinal joint or other construction. To this pressure there shall be added the pressure corresponding to the strength of the stays or braces for stresses given in Table (1), each stay or brace being assumed to resist the steam pressure acting on the full area of the external surface supported by the stay or brace.

Table (1) ref. CFR 49 230.3(a)

Maximum staybolt stress, psi. = 7,500

Maximum brace stress, psi. = 9,000

ref. L-43(a)(2): (does not reference the formula)

A = largest area of wrapper sheet supported by staybolt, sq. in. =

a = area of smallest section of staybolt (get from staybolt calc and survey)

S = max. allowable stress from Table (1)

pressure corresponding to the strength of the stays or braces P2 = (S * a) / A

PR2 = P1 + P2

32.00 in²
0.5777 in²
7500 psi

135 psi

275 psi

Wrapper Sheet – Roof (Continued)

Method 3 for Maximum Allowable Working Pressure				
oc = angle any crown stay makes with vertical axis of s = transverse spacing of crown stays in crown sheet Σ(s x sin oc) = summated value of transverse spacing stays considered in one transverse plane and on one	t g (s x sin oc) for all		4.0000 in	measured
of boiler.				
		DC deg)	s *sin OC	
	1 (inboard)	4 4	0.2790 in	measured
	2	6	0.4181.in	measured
	3	9	0.6257 in	measured
	4	11	0.7632 in	measured
	5	14	0.9677 in	measured
	6	27	1.8160 in	measured
	7	42	_2.6765 in	measured
	8	55	3.2766 in	measured
	9 (outboard)	71	3.7821 in	measured
Σ(s * sin OC)			14.6050 in	
$P3 = (TS / FS) \times ((t \times E) / R - \Sigma(s \times sin oc))$			235 psi	
The above formula applies to the longitudinal center sheet, and in cases where E is reduced at another, the strength at that section (from the formula) may be proportion that the distance from the roof sheet to the sheet at the center bears to the distance, measured through the other section from the roof sheet to a line sheet and at right angles to the radian line, or: POA = P3 *X/Y This table will not be filled out since it will show areas is allowed. We only care about the worst care, which	ne MAWP based on e increased in the e top of the crown on a radial line, e tangent to the crown s where increased press	ure		
Final MAWP and Minimum Thickness		a s		
MAWP is the least of the above calculations			235 psi	50.540 50.540
Tmin = WP * (R - Σ (s * Sin OC)) / (SA * E)			0.5468 in	

Thermic Syphon

The Nicholson Thermic Syphon can be modeled as flat stayed surfaces and a pipe under pressure (the neck). The flat stayed surface calculations are in the Plate Thicknesses of Flat Stayed Surfaces section. The staybolt calculations are in the Staybolts section. The following calculations are for the Neck minimum thickness.

Thermic Syphon - Neck		
The neck of the thermic syphon can be modeled as a small cylinder under pressure. The equations found in the "boiler courses not at seams" are suitable.	10 B	
Inputs		
WP = working pressure TS = tensile strength of plate t = thickness of shell plates E = efficiency R = inside radius of shell FS = minimum required Factor of Safety	31	desired unknown steel linked to survey no seam survey minimum
Calculations	7.00	The second secon
Calculate Maximum Working Pressure MAWP = (TS x t x E) / R x FS	1181 psi	
Minimum shell thickness required for Factor of Safety Tmin = WP x R x FS / (TS x E)	0.0640 in	
Plate Tension at Working Pressure PT = (WP x R) / (E x t)	2116 psi	
Factor of Safety at Working Pressure $FS = (TS \times t \times E) / (R \times WP)$	23.63	

Staybolts

Staybolts

Ref. 49 CFR Part 230.25

The maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional are on round, rectangular, or gusset braces shall be 9,000 psi.

Inputs & Basics

Main equation:

 $S = (A \times WP) / a$

WP = working pressure

A = largest area supported by a staybolt

a = smallest cross sectional area of staybolt supporting A

S = stress at smallest cross sectional area of staybolt

AS = allowable stress

ref. ASME Section I, 1971, A-8

The allowable loads based on the net cross-sectional areas of staybolts with V-threads are computed from the following formulas. The use of Whitworth threads with other pitches is permissible.

D = diameter of staybolt over the threads

n = number of threads per inch

P = pitch of threads = 1/n

tt = tell tail diameter

 $ta = tell tail area = pi * tt^2 / 4$

The formula for the diameter of a staybolt at the bottom of a V-thread is:

d = D - (P * 1.732)

When ANSI Standard threads are used, the formula becomes:

 $d = D - (P * 1.732 \times .75)$

In calculating the area supported by a staybolt, the staybolt area must be subtracted from the area as the staybolt is self-supporting. The area under stress must be reduced by the area of any tell tale. The following equations are drawn from the above with a bit of algebra and substitution:

smallest cross sectional area including threads and tell tales

 $at = (pi * d^2 / 4) - ta$

smallest cross sectional area above the threads (ignore tell tales)

 $a = pi * D^2 / 4$

Maximum Allowable Working Pressure at design diameter

MAWP = AS * at / A

Stress at smallest area at desired working pressure

S = A * WP / at

Minimum diameter above threads at working pressure

Tmin = SQRT(((A * WP / AS) + ta) * 4 / pi) + (P * 1.732)

200 psi

desired

7500 psi staybolts

12 t / in measured

0.0833 in / t

0.1875 in measured

0.0276 in²

Staybolts (Continued)

Throat Sheet (Flexible)	
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure	5.2500 in 3.2500 in 3.2500 in 4.0000 in 5.5474 in ² 0.7854 in ² 16.28 in ² 252 psi 5947 psi 0.9110 in
Throat Sheet (Solid)	
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure	4.2500 in 4.2500 in 4.2500 in 4.2500 in 5.5474 in 6.7854 in 6.72 6.7854 in 6.312 psi 6.9329 in measured middle outside linked to survey
Side Sheet (Flexible)	
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure	4.5000 in deasured 4.2500 in 1.0000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure	4.2500 in

Staybolts (Continued)

Thermic Syphon	
DV V Cal Dish of laws of annual	4.0000 in
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area	4.0000 in measured 4.0000 in measured
D = Diameter of staybolt over threads	1.0000 in linked to survey
at = smallest cross sectional area including threads and tell tales	0.5474 in ²
a = smallest cross sectional area above the threads (ignore tell tales)	0.7854 in ²
A = largest area supported by a stay = $(PV * PH) - a$	15.21 in ²
MAWP = Maximum Allowable Working Pressure at design diameter	270 psi
S = Stress at smallest area at desired working pressure	5559 psi
Tmin = Minimum diameter above threads at working pressure	0.8871 in
Thin is in the state of above through at the state of the	
Door Sheet (Flexible)	
PV = Vertical Pitch of largest area	4.2500 in measured
PH = Horizontal Pitch of largest area	4.0000 in measured
D = Diameter of staybolt over threads	1.0000 in linked to survey
at = smallest cross sectional area including threads and tell tales	0.5474 in ²
a = smallest cross sectional area above the threads (ignore tell tales)	0.7854 in ²
A = largest area supported by a stay = (PV * PH) - a	16.21 in ²
MAWP = Maximum Allowable Working Pressure at design diameter	253 psi
S = Stress at smallest area at desired working pressure	5924 psi
Tmin = Minimum diameter above threads at working pressure	0.9096 in
Door Sheet (Solid)	
PV = Vertical Pitch of largest area	4.2500 in measured
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area	4.0000 in measured
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads	4.0000 in measured 1.0000 in linked to survey
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales	4.0000 in measured 1.0000 in linked to survey 0,5474 in ²
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales)	4.0000 in measured linked to survey 0.5474 in ² 0.7854 in ²
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a	4.0000 in 1.0000 in 1.0000 in 0.5474 in 0.7854 in 1.0000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter	4.0000 in 1.0000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure	4.0000 in 1.0000 in 1.0000 in 0.5474 in ² 0.7854 in ² 16.21 in ² 253 psi 5924 psi
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter	4.0000 in 1.0000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure	4.0000 in 1.0000 in 0.5474 in? 0.7854 in? 16.21 in? 253 psi 5924 psi
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure	4.0000 in 1.0000 in 1.0000 in 0.5474 in ² 0.7854 in ² 16.21 in ² 253 psi 5924 psi
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure	4.0000 in 1.0000 in 0.5474 in 0.7854 in 0.7854 in 0.7854 in 0.9096 in 1.0000 in 1.0000 in 1.0000 in 1.0000 in 1.0000 in 1.00000 in 1.0000 in 1.00000 in 1.000000 in 1.00000 in 1.00000 in 1.00000 in 1.00000 in 1.00000 in 1.000000 in 1.00000 in 1.00000000 in 1.000000 in 1.000000 in 1.000000 in 1.000000 in 1.0000000000 in 1.000000000000000000000000000000000000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area	4.0000 in 1.0000 in 0.5474 in 0.7854 in 0.7854 in 0.7854 in 0.9096 in 1.0000 in 4.0600 in 4.1550 in 1.0000 in 1.0000 in 1.00000 in 1.000000 in 1.00000 in 1.00000000 in 1.00000 in 1.000000 in 1.000000 in 1.000000 in 1.00000000 in 1.000000000000000000000000000000000000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads	4.0000 in 1.0000 in 1.00000 in 1.000000 in 1.00000 in 1.000000 in 1.00000 in 1.00000 in 1.000000 in 1.000000 in 1.000000 in 1.000000000000000000000000000000000000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads	4.0000 in 1.0000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads a = smallest cross sectional area above the threads	4.0000 in 1.0000 in 1.0000 in 1.0000 in 1.0000 in 1.005474 in 2.0.7854 in 2.0.7854 in 2.0.53 psi 5.0.9096 in 1.0020 in 1.0020 in 1.0020 in 1.0085 in 2.0.7885 in 2.0.5777 in 2.0.7885 in 2.0.57875 in 2.0.5777 in 2.0.7885 in 2.0.5777 in 2.0.5777 in 2.0.7885 in 2.0.5777 in 2.0.57777 in 2.0.5777 in 2.0.5777 in 2.0.5777 in 2.0.5777 in 2.0.5777 in
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV*PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads a = smallest cross sectional area above the threads A = largest area supported by a stay = (PV*PH) - a	4.0000 in 1.0000 in 1.0000 in 1.0000 in 1.0000 in 1.05474 in 2.07854 in 2.07854 in 2.253 psi 5924 psi 0.9096 in 4.1550 in 1.0020 in 0.5777 in 2.07885 in 2.16.08 in 2.0000 in 1.0000 in 1.
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads a = smallest cross sectional area above the threads A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter	4.0000 in 1.0000
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads a = smallest cross sectional area above the threads A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure	4.0000 in 1.0000 in 0.5474 in 0.7854 in 0.7854 in 0.7854 in 0.9096 in 1.0020 in 1.0020 in 1.0020 in 0.5777 in 0.7885
PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads and tell tales a = smallest cross sectional area above the threads (ignore tell tales) A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter S = Stress at smallest area at desired working pressure Tmin = Minimum diameter above threads at working pressure Crown Sheet (equations modified for no tell tales) PV = Vertical Pitch of largest area PH = Horizontal Pitch of largest area D = Diameter of staybolt over threads at = smallest cross sectional area including threads a = smallest cross sectional area above the threads A = largest area supported by a stay = (PV * PH) - a MAWP = Maximum Allowable Working Pressure at design diameter	4.0000 in 1.0000

Diagonal Braces – Back Head

Back Head Brace Calculations		
The load on each individual stay shall be determined by the area supported by that stay. The overall area of the sheet will be calculated then the stress on each brace will be determined by analyzing relative percentages of area held by each stay size using smallest measured cross sections.		
P = max. allowable working pressure	<u>200</u> psi	desired
Area to be stayed		
ref. ASME Code Section 1, 1971		
PFT - 31.1 The area of a segment of a flanged head to be stayed shall be the area enclosed by lines drawn 2 in. from the tubes and a distance d from the shell. The value of d used may be the larger of the following values:		
d = the outer radius of the flange not exceeding 8 times the thickness of the head = 8t d = 80t / SQRT(P)	2.0000 in 4.0480 in 2.8624 in	measured
where d = unstayed distance from shell t = thickness of head	<u>0.5060</u> in	linked to survey
PFT - 31.2 The area of a segment of a flanged head to be stayed shall be the area enclosed by the shell and a line drawn 2 in. from the tubes $A = 4(H - d - 2)^{2} / 3 * SQRT (2(R-d) / (H-d-2)608)$		
PFT - 31.3.2 Net area to be stayed in segment of unflanged head: $A = 4(H - 2)^2 / 3 * SQRT ((2R) / (H-2)608)$		
d = zero for unflanged heads (input 0, or force a d by inputting any value, else "n/a" for flanged d above)	n/a in	flanged
H = distance from tubes to shell R = radius of boiler head	3	mean
d = distance determined from PFT - 31.1, and PFT - 31.3.2	2.8624 in	measured
A = area to be stayed from PFT - 31.1, and PFT - 31.3.2 dd = diameter of dry pipe through flue sheet	1085.97 in ² 0.0000 in	none on back head
AH = half the area (one side) to be braced = $(A - pi*dd^2/4)/2$	542.99 in ²	
True formula for "Segment" (implement with $h=$ H-2-d, and $R=$ R - d to account for offset above tubes, and inward from shell).		
$AT = R^{2} \cos^{-1}\left(\frac{R-h}{R}\right) - (R-h) \sqrt{2Rh - h^{2}}$	1086.05 in ²	
ATH = half the area (one side) to be braced = $(AT - pi*dd^2/4)/2$	543.03 in ²	

Diagonal Braces – Back Head (Continued)

Stress on Braces Determine the area, supported by each size brace. Multiply this area by the maximum allowable working pressure. Divide this by the smallest measured cross sectional, in square inches, of the brace supporting the section of plate considered. The result will be the stress in pounds per square inch on the brace. Divide by Cos of the angle to get true stress. This stress must not exceed 9,000 psi.		
Small Braces		
bd = smallest measured brace diameter	<u>1.2540</u> in	linked to survey
pl = percent load carried by this size brace	25 %	measured
n = number of this size brace on one side	4	actual
ba = brace angle	10 deg	measured
a = cross sectional area of single brace = pi * bd² / 4	1.24 in ²	
As = area supported by single brace = AH * (pl / 100) / n	33.94 in ²	
S = stress on straight brace = P * As / a	5496 psi	
Sba = stress with angle, not to exceed 9,000 psi = S / Cos(ba)	5580 psi	
ATs = area supported by single brace = ATH * (pl/100) / n	33.94 in ²	
ST = stress on straight brace = P * ATs / a	5496 psi	
STba = stress with angle, not to exceed 9,000 psi = ST / Cos(ba)	5581 psi	
Large Braces		
bd = smallest measured brace diameter		linked to survey
pl = percent load carried by this size brace	75 %	measured
n = number of this size brace on one side	6	actual
ba = brace angle	12 deg	measured
a = cross sectional area of single brace = pi * bd² /4	2.41 in ²	
As = area supported by single brace = $AH * (pl / 100) / n$	67.87 in ²	
S = stress on straight brace = $P * As / a$	5631 psi	
Sba = stress with angle, not to exceed 9,000 psi = S / Cos(ba)	5757 psi	
	a= aa · 2	
ATs = area supported by single brace = ATH * (pl/100) / n ST = stress on straight brace = P * ATs / a	67.88 in ²	
STba = stress with angle, not to exceed 9,000 psi = <i>ST/Cos(ba)</i>	5631 psi	
3 Tua - Stress with aligie, not to exceed 3,000 psi - 317 cos(ba)	5757 psi	
Additional Form 4 Entries		
Avonivija RVIII 44 FILIES		

total number of stays
total actual area of brace
total equivalent direct stay (apply Cos ba to each of the above)

20 38.81 in² 38.03 in²

Heating Surface and Steam Generating Capacity

Heating Surface		
Compare the calculations below with the safety valve capacity.		
WP = working pressure	<u>200</u> psi	desired
Calculate Heating Surface		
n = number of tubes	160	linked to every
D = outside diameter of tubes (front flue sheet)	162 2.0000 in	linked to survey
Dr = outside diameter of tubes (rear flue sheet)	2.0000 in	linked to survey
t = wall thickness	<u>0.1200</u> in	linked to survey
L = Length of tubes	175.0000 in	linked to survey
Heating surface for these tubes = n * L * pi * (D - 2t) / 144	1089 ft²	
n = number of tubes	<u>24</u>	linked to survey
D = outside diameter of tubes (front flue sheet)	5.3750 in	linked to survey
Dr = outside diameter of tubes (rear flue sheet) t = wall thickness	4.5000 in 0.1500 in	linked to survey
L = Length of tubes	175.0000 in	linked to survey
Heating surface for these tubes = $n * L * pi * (D - 2t) / 144$	465 ft ²	aminou to survey
realing carract for allocations in a property		
Total tube heating area	1554 ft ²	
Firebox	171.00 ft ²	total
Total Firebox	171.00 ft ²	
Thermic Siphons	70.00 ft ²	total
Total Thermic Siphons	70.00 ft ²	
7. Canada Capatana		
End area of all tubes at front flue sheet (use ID at front)	6.11 ft ²	(cell is equation)
End area of all tubes at rear flue sheet (use ID at rear)	5.05 ft ²	(cell is equation)
Front flue sheet (minus tubes and dry pipe)	19.25 ft ²	(cell is equation)
Rear flue sheet (minus throat and tubes)	6.62 ft ²	(cell is equation)
Total flue sheets	25.87 ft ²	
Total heating surface	1820 ft²	
•		
Calculate Steam Generating Capacity		
C = minimum pounds of steam per hour per square foot of	14 lbs / hr / ft ²	Oil fired
heating surface:		
If Locomotive is hand fired with Coal, C = 8		
If Locomotive is Stoker fired with Coal, C = 10 If Locomotive is Oil fired, C = 14		
Boiler steam generating capacity = Heating Surface * C	25486 lbs / hr	
boller steam generating capacity – Heating Surface	20400 IDS / 111	
Compare to Pressure Relief Through Safety Valves		
Coale 3-1/2" type D set to 200 psi	13000 lbs / hr	spec
Coale 3-1/2" type D set to 200 psi	13000 lbs / hr	spec
Total relief through cofety vehice	20000-11	
Total relief through safety valves	26000 lbs / hr	
Total relief should be larger than steam generating capacity	OK	

Thickness Measurements

A full survey has been done, however only the minimum values have been included in these spreadsheets. For boiler courses where a minimum at seam is required, the overall minimum has been used, as this is a worst case.

The thickness measurements were taken with an ultrasonic instrument. All measurements for all areas are in inches.

Front Flue Sheet

Front Flue Sheet Thicknesses

Minimum: 0,456 Spec: 1/2" = 0,5000

Engineer S	Side							Fireman Si	ide
	1	2	3	4	5	- 6	7	8	9 .
A									
В-									100
C.									
D			0.456						
E									
F									
G	100								

Braces

Front Brace (small):	1.250	Spec: =
Fireman side	Front	Rear 3 4 1.250
Engineer side		
Front Brace (large).	1.750 Front	Spec: = Rear
Fireman side		1.750

Braces (Continued)

Throat Sheet Braces:	1.87	75 Spec	
	Engineer side	Firema	n Side
W	2.500	3 4	
H	0.750		
Area	1.875		

Braces (Continued)

Back Head Braces (small):	1.254	Spec:
	Front	Rear
Fireman side E Fireman side C	1.254	
Engineer side C Engineer side E		

Back Head Braces (large).	1,132	Spec	
	Front	Rear	
	1.	2	
Fireman side G	1.752		

Dry Pipe

Cast piece at bottom of throttle assembly

Front		Nadamarkan Divini Califor	Rear	
14 A	15 	16	17	
В	0.747			
C	<u></u>	<u> </u>	<u> </u>	
Minimum:	0.747		Spec:	72

Tubes

Tube Thicknesses	
Small Minimum: 0.120	Spec: 11 gauge 0.1200
Large Minimum: 0.150	Spec:
Length (in) 175.0000	
Small Tube (samples, all new material)	Outside Diameter (in) 2.0000
1 2 3 4 A 0.120	Tube Count. 162
Large Tube	Outside Diameter (in): 5.3750
1 2 3 4	Outside Diameter Rear End (in) 4.5000
A 0.150	Tube Count: 24

1st Course

1st Course (Front Course) Sheet Thicknesses

Minimum:	0.743	Spec:	3/4" = 0.7500	Front ID:	68.5000
Seam Minimum:		0.743		Rear ID:	68.5000

Rear					Engine							Front	
	13	12	11	10	9	- 8	7	- 6	5	4	- 3	2	1
А	_									e er eren.			
Ĉ		125 5 2 2 2						1			2.1.1507.9.3		
D		.									 		
E													
F													
G													
H .	 						Mariaman de la companya de la compa						
J		0.743	 								<u> </u>		
ĸ —		0.7.10		·									
L L													
M		ļ	ļ										
N	_		 					ļ			 		
Ρ			 		instruction of the same of the						<u> </u>		
Q													
R													

Butt Straps

		presidential de la companion d
Outer Minimum: 0.61	5 876	= #
Odio) Millimania		THE RESERVE AND ADDRESS OF THE PERSON OF THE

Rear		Front
6	5	4 3 2
В	0.615	

Note: seam is at the far engineer's side. Not on top.

		The second secon	
Inner Minimum:	0.612	Shear	=
THE TANKETT COLLECTION	0.012		ANNOUNCE DE L'ANNOUNCE DE

	Rear	Front
	6 - 5	4 3 2
В	0.612	

1st Course (Continued)

Front					Firema							Rear	
<u>1</u>	2 ,	3	4	5	6	7	- 8	9	10			13	14
Α .	10.00								100	es accessors			
В						F. S.				7			
C	ļ	ļ		 			<u> </u>						ļ
Ď	ļ												
E	<u> </u>												
() F	<u> </u>			<u> </u>									
G	<u> </u>												
H													
	ļ												
J	ļ		<u> </u>			ļ	ļ						
K				ļ		ļ							
L .									<u> </u>				
M					ļ		ļ	ļ					i
N	ļ	ļ				ļ					<u></u>		
0	 	<u> </u>	ļ	ļ	 			ļ			ļ		
P	 	ļ			ļ		<u> </u>				ļ		
Q	 	ļ			ļ	ļ		ļ		ļ	ļ		
R	L	<u> </u>		L		L	L	L	L	L	l		

2nd Course

2nd Course (Dome Course) Sheet Thicknesses

Minimum: 0.755 Seam Minimum: 0.755	Spec: 3/4" = 0.7500	Course ID: 70,0000
------------------------------------	---------------------	--------------------

Rea		Engineer Side								Front			
1	3 12	11	10	9	8	7	6	5	4	3	2	1	
A													
В													
C													
D													
E													
F													
G													
Н													
J													
K													
L SE													
M										l			
N .													
0													
P		1											
Q 🔣													
R													

Butt straps				
Outer Minimum: 0.622		Spec.		
F	Rear		 H-1004-5-704-744	Front
A	13 0.622	12 !	2	1
Inner Minimum: 0.612		Spec.	***	
F	Rear			Front
A	13 0.612	12	2	1

Note: seam is at the far fireman's side. Not on top.

2nd Course (Continued)

Front				Firema						Rear	
1.	2 3	4	5	6	7	8	9	10	11	12	13
A				ZeZkia							
В-											
С		100									
D					a section.						
E .											
F											
G											
Н										1	
J		0.755									
K							***************************************				
		· · · · · · · · · · · · · · · · · · ·									
M											
N -											
0							<u> </u>				
Р							***************************************				
Q I											
R							***************************************				

Dome Cap

Dome Cap Thicknesses	
Dish Minimum: 1.250	Spec. 1 1/4" = 1.1250
Flange Minimum: 1.250	Spec: 1 1/4" = 1.1250

			Forward		
	2	3	4	5	6
A					
В					
A B C					
D			A DATE OF THE STATE OF THE STAT		1.250
Ε					
E G	200000000000000000000000000000000000000	Gward Arby, gyn Righan y Co		1.250	Colores - Calledon Sections - 10
1					
J					
K	ga a santan ing angan				and the second
L L	100				
M					
			Rear		

Other Measured Geometry:

Diameter of bolt centerline:	21.0000
Diameter of gasket centerline.	19.0000
Inside dish chord:	17.0000
Inside top to chord.	3.0000

Note: new lid built to spec

Dome and Manhole

Outside Throat Sheet

Outside Throat Sheet Thicknesses

Minimum: 0.741

Specia 3/4" = 0.7500

	Engineer S	Side						Fireman Si	de
	1	2	3	4	5	6	7	8	9
A	0.741				44				
В							a control of		
C									
D									
E									_,,_,_,

Inside Throat Sheet

Inside Throat Sheet Thicknesses

Minimum: 0.386

68

2002 200 2000	TO ASSESS OF THE PARTY OF THE	STREET, STREET	of Calaba Makasan Carry Makasan
200		4 /01	0.0000
10 10 15 IO		1/2" =	0.5000
Mark Chaffer	AND SECTION.		

	Fireman Si	de		Engineer S	ide
¥ 100	1	2	3	4	5
A					
В		0.386			
С					
D					

Rear Flue Sheet

Rear Flue Sheet Thicknesses

Minimum: 0.386	Spec: 1/2" = 0,6	5000

	Fireman Si		Engineer Side			
	1	2	/3	4	5	
A D		0.386	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
C		0.360				
D	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 					

Roof Sheet

Roof Sheet Thicknesses Minimum: 0.643 Spec: 5/8" = 0.6250

Rear		Engineer S	Side					Front
10	9 8	7			4	3	2	1
A E			0.643	······································				
C 1								
D								
E								
F							·	
G	<u> </u>							
		 						
J								

Front		Fireman Si	ide					Rear
1	2 3	4	5	- 6	7	8	9	10
Α								
В								
G L								
-D								
E i								
F 1								
G								
H								
J								

Crown Sheet

Crown Sheet Thicknesses

Minimum: 0.391

Spec:	3/8"	0.3750
	THE RESERVE OF THE PARTY OF THE	***************************************

Front		Engineer	Side				Rear
11	2 3	4	5	6	7	8	9.
A	0.3	91	·				
·						<u> </u>	
D 4				<u> </u>			
E							
E C							

Rear		Fireman Side				Front
. 9	8 7	6 '	5 4	3	2	1-
A		-		····		
Č –		 				
D						
E (
P I			i i			ŀ

Side Wrapper Sheets

Side Wrapper Sheet Thicknesses				
Minimum: 0.620	Spec	5/8" =	= 0.6250	
		CONTRACTOR OF THE PROPERTY OF	manage and the state of the sta	

Rear	Engineer Side		Front
10 9	8 7 6	5 4 3	2 1
K	0.620		
N T			
9		<u> </u>	
9			
R			

Front		Fireman S	ide					Rear
1	2 3	4	5	- 6	7	8	9	10
К								
- E								
0								
P							-4	
Q		***************************************		······				
R								

Firebox Side Sheets

÷	Fire	box	Side	Sheet	Thic	kness	es	

Minimum: 0.377	Spec 3/8" = 0.3750

Front			Engineer 9	Side				Rear
<u> </u>	2	3	4	5	6	7	8	9
G								
					<u> </u>			
M								
N	Arte Company							

Rear	Firema	n Side		Front
9 8	7 6	5 4	3	2 1
G	0.377			
H				
1				
J.				
M				
N L				

Thermic Syphon

Thermic Syphon Plate Minimum: 0.386 Spec: 3/8" = 0.3750

Front		Engineer Side					Rear		
	2 3	4	5	6	7	. 8	9		
Α		0.200							
		0.386							
D.									
E									
F _						-,			
G									

Rear	Fireman Side		Front
9 8	7 6 5	4 3	2 1
A			
B			
e i			
i b			
E C			
Ē			
c			

			AND DESCRIPTION OF THE PERSON NAMED IN	AND DESCRIPTION OF THE PERSON
Neck Minimum:	0.378	Spec	2/2"	U 322U
TACON MINIMITALIA.	0.370		J/U -	0.57509
			TO THE PROPERTY OF THE PARTY OF THE	CONTROL CONTROL TO SAID

7	1	2	3	4
A	0.378			
В				

Neck diameter	8.0000
Starbaltsia	

Door Sheet

Door Sheet Thicknesses

Minimum: 0.370

Spee: 3/8" = 0.3750

	Engineer S	Side						Fireman Si	ide
	1	2	3	4	5	6	7	8	9.
A			0.370						
B B								1	
C -				Jane College	44 at 14 at	elle de la company			
. D					100	5.75			
Ē					<u> </u>		***************************************		
ᇣ	rate and the state of		()						
G									
Н									
						hitelandra de la composition della composition d	Navir manus munus aucus acques		

FLC #18

75

Back Head

Back Hea	nd Thickness	ses								
Minimum	0.506			Spec:	9/16" =	0.5625				
	Fireman Si						10/2077 and the second		Engineer S	ide
A B C D E F G		2	3	4	5	6	7	8	9	10
F G				0.506	part of a contract			,		
H I J										
K L M										

FLC #18

76

Staybolts

Tensile Strength of Plate

The FRA Form 4 requires that documentation exist for using tensile strengths greater than 50,000 psi. We find that there are stamps on the boiler plates and other plates attesting to the original material strengths. They read 55,000 psi.

Also the original paperwork for this engine says:

"Records in the office of the engr. of tests. of the American Locomotive Company shoe that the lowest tensile strength of the sheets in the shell of this boiler is: 55,000 pounds per sq. in."

We've chosen to use 55,000 psi for calculations in areas with original steel. For unknown steel (as in the Thermic Syphon, and the new dome lid) we've used 50,000 psi...

How to Recreate This Document

This document is composed of several parts:

- The "Measurements.xls" file is composed of many separate worksheets for holding all the survey data. It also has images of each area, and finds the area minimums for auto-insertion into the various calculations later.
- A series of Excel spread sheets carry all the calculations of minimum allowable thicknesses, maximum pressures and stresses.
- The "Main.xls" file brings all the calculations and survey minimums together in one place. It also checks them against each other and delivers an OK or Not OK result for each area.
- A separate "FRA Form 4.doc" file is the actual Form 4. It is editable, but has all survey and calculation results pulled automatically from the above spreadsheets.
- This "Engineering Calculations" document pulls it all together.

All these files should remain in the same directory so that they will continue to pass data back and forth. Any of the documents can be opened, edited and printed separately, but to ensure that all data flows properly, a series of careful steps should be followed. The correct way to recreate this document and / or make changes to the base level data is:

- 1. Update survey data or other geometry information
 - a. Load "Measurements.xls" into Excel. Add any new survey data. Leave it open.
 - b. Load the "Main.xls" spreadsheet, answering "No" to the update request. Leave it open.
 - c. Bring up all the other Excel spreadsheets, answering "No" to any update requests. (Excel will automatically update spreadsheets amongst themselves when they are jointly open. Saying "Yes" during loading just causes preliminary opens and closes that are unnecessary.)
 - d. Make any changes to the spreadsheets. The adjustments will all be pushed around amongst each other and back to "Main". Input fields are white. Most interesting answers are black. Grey fields are intermediate calculations. Working pressure is set in "Main" for all other sheets.
- 2. Update the Form 4
 - a. Open "FRA Form 4.doc" into Word answering "Yes" to the update request. (The Form 4 will now be up to date).
 - b. Make other changes to the Form 4. However, when editing any Form 4 data directly, watch out for linked fields. They turn grey when the cursor is placed in them. Do not edit linked fields directly, or the link may be broken. The links point back to the Excel spreadsheet data. Make changes there.
- 3. Update the main document
 - a. Open "Engineering Calculations.doc", answering "Yes" to the update request. The loading process will take a long time, as information will be updating.

- b. Scroll to the Form 4 inclusion near the beginning. Right mouse click over any part of the Form 4 (it should turn grey as it is a "field"). Choose "Update Field". This will update any text changes. The calculated numbers will have been updated already.
- c. Edits to the document are fine, but do not edit linked fields, or spreadsheet data directly. Instead, go to the originals as discussed above,
- d. If changes to page numbers or section headings have occurred, then the Table of Contents will need to be refreshed. Right mouse click over the TOC, and choose "Update Field". In the dialog that comes up next, click "Update Entire Table".
- e. The Form 4 pages should start on an odd page number if printing on both sides of the paper. This way it can be extracted whole from the main document. A good way to ensure this is to add or subtract a blank page just after the title page.
- 4. Clean up, Save and Print
 - a. Save all spreadsheets. The easiest way to do this is to exit Excel and answer "Yes to All" on the first request.
 - b. Save the Form 4 document. Print it also, if desired, for a clean Form 4 just on its own.
 - c. Save and Print this document.
 - d. Exit all applications.